L(s) = 1 | + (−1.40 + 0.146i)2-s + (−0.514 + 1.24i)3-s + (1.95 − 0.411i)4-s + (−0.618 + 1.49i)5-s + (0.542 − 1.82i)6-s + 4.58·7-s + (−2.69 + 0.864i)8-s + (0.843 + 0.843i)9-s + (0.652 − 2.19i)10-s + (0.0872 + 0.0361i)11-s + (−0.496 + 2.64i)12-s + (0.783 − 3.51i)13-s + (−6.45 + 0.670i)14-s + (−1.53 − 1.53i)15-s + (3.66 − 1.60i)16-s + 2.55·17-s + ⋯ |
L(s) = 1 | + (−0.994 + 0.103i)2-s + (−0.296 + 0.716i)3-s + (0.978 − 0.205i)4-s + (−0.276 + 0.668i)5-s + (0.221 − 0.743i)6-s + 1.73·7-s + (−0.952 + 0.305i)8-s + (0.281 + 0.281i)9-s + (0.206 − 0.693i)10-s + (0.0263 + 0.0108i)11-s + (−0.143 + 0.762i)12-s + (0.217 − 0.976i)13-s + (−1.72 + 0.179i)14-s + (−0.396 − 0.396i)15-s + (0.915 − 0.402i)16-s + 0.620·17-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.190−0.981i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.190−0.981i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.190−0.981i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.190−0.981i)
|
Particular Values
L(1) |
≈ |
0.749287+0.617793i |
L(21) |
≈ |
0.749287+0.617793i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.40−0.146i)T |
| 13 | 1+(−0.783+3.51i)T |
good | 3 | 1+(0.514−1.24i)T+(−2.12−2.12i)T2 |
| 5 | 1+(0.618−1.49i)T+(−3.53−3.53i)T2 |
| 7 | 1−4.58T+7T2 |
| 11 | 1+(−0.0872−0.0361i)T+(7.77+7.77i)T2 |
| 17 | 1−2.55T+17T2 |
| 19 | 1+(0.456+1.10i)T+(−13.4+13.4i)T2 |
| 23 | 1+(−1.27−1.27i)T+23iT2 |
| 29 | 1+(−0.966−0.400i)T+(20.5+20.5i)T2 |
| 31 | 1+(1.62−1.62i)T−31iT2 |
| 37 | 1+(−0.285−0.118i)T+(26.1+26.1i)T2 |
| 41 | 1−4.15iT−41T2 |
| 43 | 1+(8.33−3.45i)T+(30.4−30.4i)T2 |
| 47 | 1+(6.32−6.32i)T−47iT2 |
| 53 | 1+(−3.50+1.45i)T+(37.4−37.4i)T2 |
| 59 | 1+(−5.30+12.8i)T+(−41.7−41.7i)T2 |
| 61 | 1+(−7.13−2.95i)T+(43.1+43.1i)T2 |
| 67 | 1+(13.6−5.66i)T+(47.3−47.3i)T2 |
| 71 | 1+0.284iT−71T2 |
| 73 | 1−1.57T+73T2 |
| 79 | 1+3.48T+79T2 |
| 83 | 1+(2.91+7.04i)T+(−58.6+58.6i)T2 |
| 89 | 1+14.6iT−89T2 |
| 97 | 1+(10.1+10.1i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.18179872767777914014034978087, −10.53357585549075223483653231109, −9.828850580537368417552386230697, −8.533095408710668098754533173597, −7.85427488044653708172902484389, −7.09030107794876489760638598041, −5.62450371911466080374409584828, −4.76450543754327888174678980288, −3.17702757026756942737211038519, −1.54338735709664151633885829392,
1.06542663758188521434020761208, 1.95791999781993410803455387247, 4.07134693487118298311564053588, 5.34320062218775638240695823749, 6.63663376773082590756317024190, 7.48935520477045794126026952953, 8.307584868350665478992367105087, 8.918221507796646419976981168430, 10.12682953622671667115268570225, 11.14913354408919950124928334847