L(s) = 1 | + (−1.29 − 0.572i)2-s + (0.174 − 0.420i)3-s + (1.34 + 1.47i)4-s + (1.36 − 3.30i)5-s + (−0.466 + 0.444i)6-s + 1.57·7-s + (−0.893 − 2.68i)8-s + (1.97 + 1.97i)9-s + (−3.66 + 3.49i)10-s + (1.42 + 0.591i)11-s + (0.857 − 0.308i)12-s + (1.31 − 3.35i)13-s + (−2.03 − 0.901i)14-s + (−1.15 − 1.15i)15-s + (−0.380 + 3.98i)16-s − 3.74·17-s + ⋯ |
L(s) = 1 | + (−0.914 − 0.404i)2-s + (0.100 − 0.242i)3-s + (0.672 + 0.739i)4-s + (0.612 − 1.47i)5-s + (−0.190 + 0.181i)6-s + 0.595·7-s + (−0.315 − 0.948i)8-s + (0.658 + 0.658i)9-s + (−1.15 + 1.10i)10-s + (0.430 + 0.178i)11-s + (0.247 − 0.0889i)12-s + (0.364 − 0.931i)13-s + (−0.544 − 0.240i)14-s + (−0.297 − 0.297i)15-s + (−0.0950 + 0.995i)16-s − 0.908·17-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.194+0.980i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.194+0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.194+0.980i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.194+0.980i)
|
Particular Values
L(1) |
≈ |
0.912266−0.749503i |
L(21) |
≈ |
0.912266−0.749503i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.29+0.572i)T |
| 13 | 1+(−1.31+3.35i)T |
good | 3 | 1+(−0.174+0.420i)T+(−2.12−2.12i)T2 |
| 5 | 1+(−1.36+3.30i)T+(−3.53−3.53i)T2 |
| 7 | 1−1.57T+7T2 |
| 11 | 1+(−1.42−0.591i)T+(7.77+7.77i)T2 |
| 17 | 1+3.74T+17T2 |
| 19 | 1+(−3.19−7.70i)T+(−13.4+13.4i)T2 |
| 23 | 1+(3.88+3.88i)T+23iT2 |
| 29 | 1+(−3.22−1.33i)T+(20.5+20.5i)T2 |
| 31 | 1+(−1.41+1.41i)T−31iT2 |
| 37 | 1+(1.01+0.418i)T+(26.1+26.1i)T2 |
| 41 | 1+10.5iT−41T2 |
| 43 | 1+(0.478−0.198i)T+(30.4−30.4i)T2 |
| 47 | 1+(1.47−1.47i)T−47iT2 |
| 53 | 1+(4.69−1.94i)T+(37.4−37.4i)T2 |
| 59 | 1+(−2.03+4.91i)T+(−41.7−41.7i)T2 |
| 61 | 1+(6.76+2.80i)T+(43.1+43.1i)T2 |
| 67 | 1+(5.79−2.40i)T+(47.3−47.3i)T2 |
| 71 | 1−5.97iT−71T2 |
| 73 | 1−1.85T+73T2 |
| 79 | 1−12.4T+79T2 |
| 83 | 1+(−4.57−11.0i)T+(−58.6+58.6i)T2 |
| 89 | 1−13.4iT−89T2 |
| 97 | 1+(−3.24−3.24i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.75831902042478367561461674736, −10.06295342010941862131969277578, −9.174539973517747352269681017196, −8.232222102657673474790338451709, −7.85831989102969014407659045764, −6.39036308384731141799716086350, −5.17795163453634087013946263402, −4.01817800644349294277184549620, −2.06315976226253288932293429825, −1.19387107390197202969420997085,
1.69491923218093880099836660849, 3.03435180236402031710270399137, 4.66920229922147613012232930768, 6.30109727936244895579977511628, 6.67683493975272077593229297155, 7.57338637556831100428449329151, 8.927344484746242294946723252071, 9.540666672059606294819202743477, 10.34692147442058192033978621603, 11.30235943110030309734721186895