L(s) = 1 | + (0.928 + 1.60i)3-s + (1.51 − 1.51i)5-s + (2.97 − 0.797i)7-s + (−0.223 + 0.386i)9-s + (−0.865 − 0.231i)11-s + (−0.159 − 3.60i)13-s + (3.84 + 1.03i)15-s + (1.05 + 0.610i)17-s + (−6.68 + 1.79i)19-s + (4.04 + 4.04i)21-s + (−0.433 − 0.751i)23-s + 0.390i·25-s + 4.74·27-s + (3.26 − 1.88i)29-s + (−5.06 + 5.06i)31-s + ⋯ |
L(s) = 1 | + (0.535 + 0.928i)3-s + (0.678 − 0.678i)5-s + (1.12 − 0.301i)7-s + (−0.0743 + 0.128i)9-s + (−0.260 − 0.0699i)11-s + (−0.0442 − 0.999i)13-s + (0.994 + 0.266i)15-s + (0.256 + 0.147i)17-s + (−1.53 + 0.410i)19-s + (0.883 + 0.883i)21-s + (−0.0904 − 0.156i)23-s + 0.0780i·25-s + 0.912·27-s + (0.606 − 0.350i)29-s + (−0.909 + 0.909i)31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.975−0.219i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.975−0.219i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.975−0.219i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.975−0.219i)
|
Particular Values
L(1) |
≈ |
1.94492+0.216075i |
L(21) |
≈ |
1.94492+0.216075i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(0.159+3.60i)T |
good | 3 | 1+(−0.928−1.60i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−1.51+1.51i)T−5iT2 |
| 7 | 1+(−2.97+0.797i)T+(6.06−3.5i)T2 |
| 11 | 1+(0.865+0.231i)T+(9.52+5.5i)T2 |
| 17 | 1+(−1.05−0.610i)T+(8.5+14.7i)T2 |
| 19 | 1+(6.68−1.79i)T+(16.4−9.5i)T2 |
| 23 | 1+(0.433+0.751i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3.26+1.88i)T+(14.5−25.1i)T2 |
| 31 | 1+(5.06−5.06i)T−31iT2 |
| 37 | 1+(2.52−9.43i)T+(−32.0−18.5i)T2 |
| 41 | 1+(3.12−11.6i)T+(−35.5−20.5i)T2 |
| 43 | 1+(−4.22−2.44i)T+(21.5+37.2i)T2 |
| 47 | 1+(4.24+4.24i)T+47iT2 |
| 53 | 1+2.16iT−53T2 |
| 59 | 1+(0.0382+0.142i)T+(−51.0+29.5i)T2 |
| 61 | 1+(7.26+4.19i)T+(30.5+52.8i)T2 |
| 67 | 1+(0.422−1.57i)T+(−58.0−33.5i)T2 |
| 71 | 1+(4.27+15.9i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−9.55+9.55i)T−73iT2 |
| 79 | 1−6.37iT−79T2 |
| 83 | 1+(3.53+3.53i)T+83iT2 |
| 89 | 1+(−9.33−2.50i)T+(77.0+44.5i)T2 |
| 97 | 1+(10.6−2.86i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.88412257036020915924711732649, −10.31416530393535063949346672193, −9.484184866149994461080074400154, −8.461911619318723675417298077120, −8.017481286586547638788382159051, −6.38715453477412285320767931102, −5.12530979972171193359674368991, −4.52805714218046460337257854617, −3.21209303734983575832333975621, −1.57735721613116801150217085813,
1.88049241371162850629691024157, 2.40752838336305990880120502049, 4.27031566540695760861872321502, 5.55411239033599254338840227950, 6.69851526660139371633523873470, 7.40622444225036150606662708188, 8.388265408137165573412509129714, 9.141676156057092273566901358835, 10.46085532704549707229054679690, 11.08787039837525676122349875191