L(s) = 1 | − 2.94i·3-s − 1.81·5-s + 1.13i·7-s − 5.70·9-s − 4.40·11-s + (−2.58 − 2.50i)13-s + 5.35i·15-s + 0.701·17-s + 5.95·19-s + 3.36·21-s − 4·23-s − 1.70·25-s + 7.96i·27-s + 5.01i·29-s − 8.77i·31-s + ⋯ |
L(s) = 1 | − 1.70i·3-s − 0.812·5-s + 0.430i·7-s − 1.90·9-s − 1.32·11-s + (−0.717 − 0.696i)13-s + 1.38i·15-s + 0.170·17-s + 1.36·19-s + 0.733·21-s − 0.834·23-s − 0.340·25-s + 1.53i·27-s + 0.932i·29-s − 1.57i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.937 - 0.347i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.937 - 0.347i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0915884 + 0.510208i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0915884 + 0.510208i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (2.58 + 2.50i)T \) |
good | 3 | \( 1 + 2.94iT - 3T^{2} \) |
| 5 | \( 1 + 1.81T + 5T^{2} \) |
| 7 | \( 1 - 1.13iT - 7T^{2} \) |
| 11 | \( 1 + 4.40T + 11T^{2} \) |
| 17 | \( 1 - 0.701T + 17T^{2} \) |
| 19 | \( 1 - 5.95T + 19T^{2} \) |
| 23 | \( 1 + 4T + 23T^{2} \) |
| 29 | \( 1 - 5.01iT - 29T^{2} \) |
| 31 | \( 1 + 8.77iT - 31T^{2} \) |
| 37 | \( 1 + 3.36T + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 2.94iT - 43T^{2} \) |
| 47 | \( 1 - 1.13iT - 47T^{2} \) |
| 53 | \( 1 + 11.7iT - 53T^{2} \) |
| 59 | \( 1 + 5.95T + 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 7.49T + 67T^{2} \) |
| 71 | \( 1 + 11.8iT - 71T^{2} \) |
| 73 | \( 1 + 8.43iT - 73T^{2} \) |
| 79 | \( 1 - 10.8T + 79T^{2} \) |
| 83 | \( 1 + 2.85T + 83T^{2} \) |
| 89 | \( 1 - 8.43iT - 89T^{2} \) |
| 97 | \( 1 + 12.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99178950585917456390087883236, −9.795732005704590118602089496325, −8.418973842480414703745405096928, −7.64176828531845958891868448990, −7.41213846336651088655333543357, −5.98815620957326193323621835520, −5.16052513303897782227303704355, −3.23351120880476578568853157210, −2.14780028193559796460141726380, −0.31544598020198545195161076507,
2.89520133806281409352524074924, 3.93996541154101015795917268034, 4.75462238730020055629205013888, 5.61105944559796117999197351782, 7.31300741327736845742177101069, 8.103132825183062001092502209776, 9.227934997177447201379396904028, 10.04883037980242445504051267279, 10.58957815903099972553793601997, 11.55493088385701449822211076504