L(s) = 1 | − 2.94i·3-s − 1.81·5-s + 1.13i·7-s − 5.70·9-s − 4.40·11-s + (−2.58 − 2.50i)13-s + 5.35i·15-s + 0.701·17-s + 5.95·19-s + 3.36·21-s − 4·23-s − 1.70·25-s + 7.96i·27-s + 5.01i·29-s − 8.77i·31-s + ⋯ |
L(s) = 1 | − 1.70i·3-s − 0.812·5-s + 0.430i·7-s − 1.90·9-s − 1.32·11-s + (−0.717 − 0.696i)13-s + 1.38i·15-s + 0.170·17-s + 1.36·19-s + 0.733·21-s − 0.834·23-s − 0.340·25-s + 1.53i·27-s + 0.932i·29-s − 1.57i·31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.937−0.347i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.937−0.347i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.937−0.347i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.937−0.347i)
|
Particular Values
L(1) |
≈ |
0.0915884+0.510208i |
L(21) |
≈ |
0.0915884+0.510208i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(2.58+2.50i)T |
good | 3 | 1+2.94iT−3T2 |
| 5 | 1+1.81T+5T2 |
| 7 | 1−1.13iT−7T2 |
| 11 | 1+4.40T+11T2 |
| 17 | 1−0.701T+17T2 |
| 19 | 1−5.95T+19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1−5.01iT−29T2 |
| 31 | 1+8.77iT−31T2 |
| 37 | 1+3.36T+37T2 |
| 41 | 1−41T2 |
| 43 | 1+2.94iT−43T2 |
| 47 | 1−1.13iT−47T2 |
| 53 | 1+11.7iT−53T2 |
| 59 | 1+5.95T+59T2 |
| 61 | 1−61T2 |
| 67 | 1+7.49T+67T2 |
| 71 | 1+11.8iT−71T2 |
| 73 | 1+8.43iT−73T2 |
| 79 | 1−10.8T+79T2 |
| 83 | 1+2.85T+83T2 |
| 89 | 1−8.43iT−89T2 |
| 97 | 1+12.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99178950585917456390087883236, −9.795732005704590118602089496325, −8.418973842480414703745405096928, −7.64176828531845958891868448990, −7.41213846336651088655333543357, −5.98815620957326193323621835520, −5.16052513303897782227303704355, −3.23351120880476578568853157210, −2.14780028193559796460141726380, −0.31544598020198545195161076507,
2.89520133806281409352524074924, 3.93996541154101015795917268034, 4.75462238730020055629205013888, 5.61105944559796117999197351782, 7.31300741327736845742177101069, 8.103132825183062001092502209776, 9.227934997177447201379396904028, 10.04883037980242445504051267279, 10.58957815903099972553793601997, 11.55493088385701449822211076504