L(s) = 1 | + (1.20 + 2.09i)3-s + 2.82·5-s + (−2.20 + 3.82i)7-s + (−1.41 + 2.44i)9-s + (−1.62 − 2.80i)11-s + (−1 + 3.46i)13-s + (3.41 + 5.91i)15-s + (2.91 − 5.04i)17-s + (0.621 − 1.07i)19-s − 10.6·21-s + (−0.621 − 1.07i)23-s + 3.00·25-s + 0.414·27-s + (−4.32 − 7.49i)29-s + 5.65·31-s + ⋯ |
L(s) = 1 | + (0.696 + 1.20i)3-s + 1.26·5-s + (−0.834 + 1.44i)7-s + (−0.471 + 0.816i)9-s + (−0.488 − 0.846i)11-s + (−0.277 + 0.960i)13-s + (0.881 + 1.52i)15-s + (0.706 − 1.22i)17-s + (0.142 − 0.246i)19-s − 2.32·21-s + (−0.129 − 0.224i)23-s + 0.600·25-s + 0.0797·27-s + (−0.803 − 1.39i)29-s + 1.01·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.33304 + 1.31606i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.33304 + 1.31606i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (1 - 3.46i)T \) |
good | 3 | \( 1 + (-1.20 - 2.09i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 2.82T + 5T^{2} \) |
| 7 | \( 1 + (2.20 - 3.82i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.62 + 2.80i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.91 + 5.04i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.621 + 1.07i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.621 + 1.07i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.32 + 7.49i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 5.65T + 31T^{2} \) |
| 37 | \( 1 + (-3.74 - 6.48i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.91 - 5.04i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.03 - 3.52i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 6T + 47T^{2} \) |
| 53 | \( 1 + 2.82T + 53T^{2} \) |
| 59 | \( 1 + (-0.621 + 1.07i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 - 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.62 + 11.4i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.62 + 6.27i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 12.4T + 73T^{2} \) |
| 79 | \( 1 + 6T + 79T^{2} \) |
| 83 | \( 1 - 4T + 83T^{2} \) |
| 89 | \( 1 + (-1.67 - 2.89i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.5 + 7.79i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35484796692688337527970726096, −10.04944543107678862040808280419, −9.488616738015534926295207752071, −9.217563179927615778971584576186, −8.122432780260744564128465704578, −6.39630901918497497806049190205, −5.67336017977472620843637260124, −4.67384186769032496677940069073, −3.07031960212961596442441316760, −2.47081857615985642349475466340,
1.25426686852587588783194986356, 2.44918310669262376538627162911, 3.70892945981940961946842011871, 5.45303269820738617530664008474, 6.46960408175150434653360802389, 7.35168825284763161452944805537, 7.903609832611024544152735507094, 9.246555227633315378718886901213, 10.22384562239514511752953407474, 10.50893836827839743915766333553