L(s) = 1 | + (−1.17 − 2.04i)3-s − 2.56·5-s + (1.84 − 3.18i)7-s + (−1.28 + 2.21i)9-s + (0.516 + 0.895i)11-s + (−2.84 − 2.21i)13-s + (3.02 + 5.23i)15-s + (−3.06 + 5.30i)17-s + (−2.50 + 4.33i)19-s − 8.68·21-s + (−3.53 − 6.12i)23-s + 1.56·25-s − 1.03·27-s + (2.5 + 4.33i)29-s + 3.39·31-s + ⋯ |
L(s) = 1 | + (−0.680 − 1.17i)3-s − 1.14·5-s + (0.695 − 1.20i)7-s + (−0.426 + 0.739i)9-s + (0.155 + 0.269i)11-s + (−0.788 − 0.615i)13-s + (0.779 + 1.35i)15-s + (−0.742 + 1.28i)17-s + (−0.574 + 0.994i)19-s − 1.89·21-s + (−0.737 − 1.27i)23-s + 0.312·25-s − 0.198·27-s + (0.464 + 0.804i)29-s + 0.609·31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.923−0.384i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.923−0.384i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.923−0.384i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.923−0.384i)
|
Particular Values
L(1) |
≈ |
0.0786992+0.393783i |
L(21) |
≈ |
0.0786992+0.393783i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(2.84+2.21i)T |
good | 3 | 1+(1.17+2.04i)T+(−1.5+2.59i)T2 |
| 5 | 1+2.56T+5T2 |
| 7 | 1+(−1.84+3.18i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.516−0.895i)T+(−5.5+9.52i)T2 |
| 17 | 1+(3.06−5.30i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.50−4.33i)T+(−9.5−16.4i)T2 |
| 23 | 1+(3.53+6.12i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.5−4.33i)T+(−14.5+25.1i)T2 |
| 31 | 1−3.39T+31T2 |
| 37 | 1+(1.06+1.83i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−2.06−3.57i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−4.19+7.27i)T+(−21.5−37.2i)T2 |
| 47 | 1+10.7T+47T2 |
| 53 | 1+2.56T+53T2 |
| 59 | 1+(−5.23+9.06i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−5.62+9.73i)T+(−30.5−52.8i)T2 |
| 67 | 1+(4.86+8.42i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−2.50+4.33i)T+(−35.5−61.4i)T2 |
| 73 | 1+4.31T+73T2 |
| 79 | 1+11.5T+79T2 |
| 83 | 1−2.64T+83T2 |
| 89 | 1+(5.34+9.25i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−4.90+8.49i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.84543053470160466159728703681, −10.20279867674266124495607028120, −8.271909493027483777213275579954, −7.902661828663575642050737003162, −7.01092573626809422560437551415, −6.23820512081728087858916907981, −4.70628281085547355696063768583, −3.84897654514970693305286304510, −1.78643903968965349693797247115, −0.27654549078756125280518451938,
2.60188210447576842164962080250, 4.21216447585704202026555726346, 4.76044385149721763951763037962, 5.72765656043330839141487503292, 7.08879894756141722930873384655, 8.203263839334334264930794387713, 9.124955677534292119769525893900, 9.862487893835154234019996276761, 11.17256101563388452500090453539, 11.65876507924949341170271558566