L(s) = 1 | + 2.95·3-s + (−1.04 + 1.04i)5-s + (2.37 + 2.37i)7-s + 5.71·9-s + (−2.03 + 2.03i)11-s + (−3.25 − 1.55i)13-s + (−3.08 + 3.08i)15-s − 4.25i·17-s + (−0.214 − 0.214i)19-s + (7.00 + 7.00i)21-s − 0.169·23-s + 2.82i·25-s + 8.01·27-s − 9.09i·29-s + (4.96 − 4.96i)31-s + ⋯ |
L(s) = 1 | + 1.70·3-s + (−0.466 + 0.466i)5-s + (0.896 + 0.896i)7-s + 1.90·9-s + (−0.614 + 0.614i)11-s + (−0.902 − 0.430i)13-s + (−0.795 + 0.795i)15-s − 1.03i·17-s + (−0.0492 − 0.0492i)19-s + (1.52 + 1.52i)21-s − 0.0353·23-s + 0.564i·25-s + 1.54·27-s − 1.68i·29-s + (0.892 − 0.892i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.876 - 0.481i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.876 - 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.19573 + 0.563687i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.19573 + 0.563687i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (3.25 + 1.55i)T \) |
good | 3 | \( 1 - 2.95T + 3T^{2} \) |
| 5 | \( 1 + (1.04 - 1.04i)T - 5iT^{2} \) |
| 7 | \( 1 + (-2.37 - 2.37i)T + 7iT^{2} \) |
| 11 | \( 1 + (2.03 - 2.03i)T - 11iT^{2} \) |
| 17 | \( 1 + 4.25iT - 17T^{2} \) |
| 19 | \( 1 + (0.214 + 0.214i)T + 19iT^{2} \) |
| 23 | \( 1 + 0.169T + 23T^{2} \) |
| 29 | \( 1 + 9.09iT - 29T^{2} \) |
| 31 | \( 1 + (-4.96 + 4.96i)T - 31iT^{2} \) |
| 37 | \( 1 + (-2.37 - 2.37i)T + 37iT^{2} \) |
| 41 | \( 1 + (3.95 + 3.95i)T + 41iT^{2} \) |
| 43 | \( 1 + 2.48iT - 43T^{2} \) |
| 47 | \( 1 + (0.869 + 0.869i)T + 47iT^{2} \) |
| 53 | \( 1 + 1.81iT - 53T^{2} \) |
| 59 | \( 1 + (3.97 - 3.97i)T - 59iT^{2} \) |
| 61 | \( 1 + 0.851iT - 61T^{2} \) |
| 67 | \( 1 + (-8.69 - 8.69i)T + 67iT^{2} \) |
| 71 | \( 1 + (3.22 - 3.22i)T - 71iT^{2} \) |
| 73 | \( 1 + (-3.95 + 3.95i)T - 73iT^{2} \) |
| 79 | \( 1 - 10.5iT - 79T^{2} \) |
| 83 | \( 1 + (2.18 + 2.18i)T + 83iT^{2} \) |
| 89 | \( 1 + (7.97 - 7.97i)T - 89iT^{2} \) |
| 97 | \( 1 + (10.2 + 10.2i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39536636452434121602358442029, −10.03029521892214285013450903954, −9.452311427207470583199716238391, −8.330740673066742317533480236868, −7.82721491020735642140184376650, −7.08811388975195452514425115371, −5.28944971660766444802435797511, −4.22515270905449091683005460553, −2.80254389216636100000346603216, −2.24725068038829795829841998935,
1.56522268946033502653853743968, 2.98501701026836102600151570476, 4.09811097164885429687007385768, 4.90831316115699694386381336803, 6.83665695936558015072856253146, 7.910419510279208246362431087752, 8.185723273702117523298059753860, 9.071484187010618442147579144928, 10.16958385158856202415439556359, 10.92860907404020328981603924488