L(s) = 1 | + 2.95·3-s + (−1.04 + 1.04i)5-s + (2.37 + 2.37i)7-s + 5.71·9-s + (−2.03 + 2.03i)11-s + (−3.25 − 1.55i)13-s + (−3.08 + 3.08i)15-s − 4.25i·17-s + (−0.214 − 0.214i)19-s + (7.00 + 7.00i)21-s − 0.169·23-s + 2.82i·25-s + 8.01·27-s − 9.09i·29-s + (4.96 − 4.96i)31-s + ⋯ |
L(s) = 1 | + 1.70·3-s + (−0.466 + 0.466i)5-s + (0.896 + 0.896i)7-s + 1.90·9-s + (−0.614 + 0.614i)11-s + (−0.902 − 0.430i)13-s + (−0.795 + 0.795i)15-s − 1.03i·17-s + (−0.0492 − 0.0492i)19-s + (1.52 + 1.52i)21-s − 0.0353·23-s + 0.564i·25-s + 1.54·27-s − 1.68i·29-s + (0.892 − 0.892i)31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.876−0.481i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.876−0.481i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.876−0.481i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.876−0.481i)
|
Particular Values
L(1) |
≈ |
2.19573+0.563687i |
L(21) |
≈ |
2.19573+0.563687i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(3.25+1.55i)T |
good | 3 | 1−2.95T+3T2 |
| 5 | 1+(1.04−1.04i)T−5iT2 |
| 7 | 1+(−2.37−2.37i)T+7iT2 |
| 11 | 1+(2.03−2.03i)T−11iT2 |
| 17 | 1+4.25iT−17T2 |
| 19 | 1+(0.214+0.214i)T+19iT2 |
| 23 | 1+0.169T+23T2 |
| 29 | 1+9.09iT−29T2 |
| 31 | 1+(−4.96+4.96i)T−31iT2 |
| 37 | 1+(−2.37−2.37i)T+37iT2 |
| 41 | 1+(3.95+3.95i)T+41iT2 |
| 43 | 1+2.48iT−43T2 |
| 47 | 1+(0.869+0.869i)T+47iT2 |
| 53 | 1+1.81iT−53T2 |
| 59 | 1+(3.97−3.97i)T−59iT2 |
| 61 | 1+0.851iT−61T2 |
| 67 | 1+(−8.69−8.69i)T+67iT2 |
| 71 | 1+(3.22−3.22i)T−71iT2 |
| 73 | 1+(−3.95+3.95i)T−73iT2 |
| 79 | 1−10.5iT−79T2 |
| 83 | 1+(2.18+2.18i)T+83iT2 |
| 89 | 1+(7.97−7.97i)T−89iT2 |
| 97 | 1+(10.2+10.2i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.39536636452434121602358442029, −10.03029521892214285013450903954, −9.452311427207470583199716238391, −8.330740673066742317533480236868, −7.82721491020735642140184376650, −7.08811388975195452514425115371, −5.28944971660766444802435797511, −4.22515270905449091683005460553, −2.80254389216636100000346603216, −2.24725068038829795829841998935,
1.56522268946033502653853743968, 2.98501701026836102600151570476, 4.09811097164885429687007385768, 4.90831316115699694386381336803, 6.83665695936558015072856253146, 7.910419510279208246362431087752, 8.185723273702117523298059753860, 9.071484187010618442147579144928, 10.16958385158856202415439556359, 10.92860907404020328981603924488