Properties

Label 2-416-1.1-c3-0-14
Degree $2$
Conductor $416$
Sign $-1$
Analytic cond. $24.5447$
Root an. cond. $4.95427$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.48·3-s − 10.6·5-s + 7.29·7-s + 63.0·9-s − 39.6·11-s + 13·13-s + 100.·15-s + 111.·17-s + 70.5·19-s − 69.1·21-s − 3.12·23-s − 11.7·25-s − 341.·27-s + 262.·29-s − 86.5·31-s + 376.·33-s − 77.6·35-s + 61.7·37-s − 123.·39-s − 198.·41-s − 393.·43-s − 670.·45-s − 422.·47-s − 289.·49-s − 1.06e3·51-s + 193.·53-s + 422.·55-s + ⋯
L(s)  = 1  − 1.82·3-s − 0.952·5-s + 0.393·7-s + 2.33·9-s − 1.08·11-s + 0.277·13-s + 1.73·15-s + 1.59·17-s + 0.852·19-s − 0.719·21-s − 0.0283·23-s − 0.0936·25-s − 2.43·27-s + 1.68·29-s − 0.501·31-s + 1.98·33-s − 0.374·35-s + 0.274·37-s − 0.506·39-s − 0.756·41-s − 1.39·43-s − 2.22·45-s − 1.31·47-s − 0.844·49-s − 2.91·51-s + 0.501·53-s + 1.03·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(416\)    =    \(2^{5} \cdot 13\)
Sign: $-1$
Analytic conductor: \(24.5447\)
Root analytic conductor: \(4.95427\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 416,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 13T \)
good3 \( 1 + 9.48T + 27T^{2} \)
5 \( 1 + 10.6T + 125T^{2} \)
7 \( 1 - 7.29T + 343T^{2} \)
11 \( 1 + 39.6T + 1.33e3T^{2} \)
17 \( 1 - 111.T + 4.91e3T^{2} \)
19 \( 1 - 70.5T + 6.85e3T^{2} \)
23 \( 1 + 3.12T + 1.21e4T^{2} \)
29 \( 1 - 262.T + 2.43e4T^{2} \)
31 \( 1 + 86.5T + 2.97e4T^{2} \)
37 \( 1 - 61.7T + 5.06e4T^{2} \)
41 \( 1 + 198.T + 6.89e4T^{2} \)
43 \( 1 + 393.T + 7.95e4T^{2} \)
47 \( 1 + 422.T + 1.03e5T^{2} \)
53 \( 1 - 193.T + 1.48e5T^{2} \)
59 \( 1 - 512.T + 2.05e5T^{2} \)
61 \( 1 + 714.T + 2.26e5T^{2} \)
67 \( 1 + 498.T + 3.00e5T^{2} \)
71 \( 1 - 852.T + 3.57e5T^{2} \)
73 \( 1 - 28.6T + 3.89e5T^{2} \)
79 \( 1 + 747.T + 4.93e5T^{2} \)
83 \( 1 - 1.04e3T + 5.71e5T^{2} \)
89 \( 1 - 278.T + 7.04e5T^{2} \)
97 \( 1 - 1.60e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46957778634224707190471599866, −9.927211090627066721493208521865, −8.135594666583220762555530305099, −7.51919485480718625561268238202, −6.42986402948959714088163729939, −5.34079503636668852014399344903, −4.81436610691210131371642430019, −3.44168990620366671850498362291, −1.19421114872435626046065655188, 0, 1.19421114872435626046065655188, 3.44168990620366671850498362291, 4.81436610691210131371642430019, 5.34079503636668852014399344903, 6.42986402948959714088163729939, 7.51919485480718625561268238202, 8.135594666583220762555530305099, 9.927211090627066721493208521865, 10.46957778634224707190471599866

Graph of the $Z$-function along the critical line