Properties

Label 4-4165e2-1.1-c1e2-0-1
Degree $4$
Conductor $17347225$
Sign $1$
Analytic cond. $1106.07$
Root an. cond. $5.76694$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·3-s + 4-s + 2·5-s − 8·6-s + 8·9-s − 4·10-s − 8·11-s + 4·12-s + 8·15-s + 16-s + 2·17-s − 16·18-s + 2·20-s + 16·22-s − 4·23-s + 3·25-s + 12·27-s − 4·29-s − 16·30-s + 2·32-s − 32·33-s − 4·34-s + 8·36-s − 4·37-s − 4·41-s + 4·43-s + ⋯
L(s)  = 1  − 1.41·2-s + 2.30·3-s + 1/2·4-s + 0.894·5-s − 3.26·6-s + 8/3·9-s − 1.26·10-s − 2.41·11-s + 1.15·12-s + 2.06·15-s + 1/4·16-s + 0.485·17-s − 3.77·18-s + 0.447·20-s + 3.41·22-s − 0.834·23-s + 3/5·25-s + 2.30·27-s − 0.742·29-s − 2.92·30-s + 0.353·32-s − 5.57·33-s − 0.685·34-s + 4/3·36-s − 0.657·37-s − 0.624·41-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17347225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17347225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(17347225\)    =    \(5^{2} \cdot 7^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1106.07\)
Root analytic conductor: \(5.76694\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 17347225,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.019513164\)
\(L(\frac12)\) \(\approx\) \(2.019513164\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( ( 1 - T )^{2} \)
7 \( 1 \)
17$C_1$ \( ( 1 - T )^{2} \)
good2$D_{4}$ \( 1 + p T + 3 T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
3$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 8 T + 36 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 4 T + 48 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 4 T + 58 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 4 T + 90 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 12 T + 110 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 24 T + 254 T^{2} - 24 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 4 T + 94 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 12 T + 162 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 124 T^{2} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 4 T + 142 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 8 T + 172 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 4 T + 42 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 16 T + 210 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 4 T + 166 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.471334596153760723031639412360, −8.416716391038997407877224425800, −8.024273654407715665244808131934, −7.79560010234890287479082111417, −7.38102209599805257057261034853, −7.21005593322946190498962717405, −6.56356562205533769680672604943, −6.10007406137918267592228596715, −5.53905242158204754746284993800, −5.34173370997925694572930967407, −4.94219050165446303731289739669, −4.30211212707481108770029317800, −3.79465980502458632094007901229, −3.34449411688201667767396946334, −3.00220283623335111817960833023, −2.46026625179740911005493246561, −2.24535848289359650101831310031, −2.00216227959192056755712169015, −1.12052162663156479128229003231, −0.45910833576866128376978929856, 0.45910833576866128376978929856, 1.12052162663156479128229003231, 2.00216227959192056755712169015, 2.24535848289359650101831310031, 2.46026625179740911005493246561, 3.00220283623335111817960833023, 3.34449411688201667767396946334, 3.79465980502458632094007901229, 4.30211212707481108770029317800, 4.94219050165446303731289739669, 5.34173370997925694572930967407, 5.53905242158204754746284993800, 6.10007406137918267592228596715, 6.56356562205533769680672604943, 7.21005593322946190498962717405, 7.38102209599805257057261034853, 7.79560010234890287479082111417, 8.024273654407715665244808131934, 8.416716391038997407877224425800, 8.471334596153760723031639412360

Graph of the $Z$-function along the critical line