L(s) = 1 | − 18·3-s − 8·4-s − 66·5-s − 70·7-s + 189·9-s − 162·11-s + 144·12-s + 1.18e3·15-s − 204·17-s − 444·19-s + 528·20-s + 1.26e3·21-s + 312·23-s + 1.31e3·25-s − 1.45e3·27-s + 560·28-s + 2.72e3·29-s − 3.78e3·31-s + 2.91e3·33-s + 4.62e3·35-s − 1.51e3·36-s + 1.39e3·37-s − 632·43-s + 1.29e3·44-s − 1.24e4·45-s − 7.89e3·47-s + 2.40e3·49-s + ⋯ |
L(s) = 1 | − 2·3-s − 1/2·4-s − 2.63·5-s − 1.42·7-s + 7/3·9-s − 1.33·11-s + 12-s + 5.27·15-s − 0.705·17-s − 1.22·19-s + 1.31·20-s + 20/7·21-s + 0.589·23-s + 2.10·25-s − 2·27-s + 5/7·28-s + 3.23·29-s − 3.93·31-s + 2.67·33-s + 3.77·35-s − 7/6·36-s + 1.01·37-s − 0.341·43-s + 0.669·44-s − 6.15·45-s − 3.57·47-s + 49-s + ⋯ |
Λ(s)=(=(3111696s/2ΓC(s)4L(s)Λ(5−s)
Λ(s)=(=(3111696s/2ΓC(s+2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
3111696
= 24⋅34⋅74
|
Sign: |
1
|
Analytic conductor: |
355.283 |
Root analytic conductor: |
2.08363 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 3111696, ( :2,2,2,2), 1)
|
Particular Values
L(25) |
≈ |
0.1142454476 |
L(21) |
≈ |
0.1142454476 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C22 | 1+p3T2+p6T4 |
| 3 | C2 | (1+p2T+p3T2)2 |
| 7 | C22 | 1+10pT+51p2T2+10p5T3+p8T4 |
good | 5 | D4×C2 | 1+66T+3041T2+104874T3+3041796T4+104874p4T5+3041p8T6+66p12T7+p16T8 |
| 11 | D4×C2 | 1+162T−9311T2+1016226T3+665560740T4+1016226p4T5−9311p8T6+162p12T7+p16T8 |
| 13 | D4×C2 | 1−50980T2+1849726854T4−50980p8T6+p16T8 |
| 17 | D4×C2 | 1+12pT+542p2T2+5928p3T3+174387p4T4+5928p7T5+542p10T6+12p13T7+p16T8 |
| 19 | D4×C2 | 1+444T+315038T2+110700744T3+53743544787T4+110700744p4T5+315038p8T6+444p12T7+p16T8 |
| 23 | D4×C2 | 1−312T+262414T2+226122624T3−78303722685T4+226122624p4T5+262414p8T6−312p12T7+p16T8 |
| 29 | D4 | (1−1362T+1874795T2−1362p4T3+p8T4)2 |
| 31 | D4×C2 | 1+3786T+7637801T2+10827464034T3+11738480198292T4+10827464034p4T5+7637801p8T6+3786p12T7+p16T8 |
| 37 | D4×C2 | 1−1396T−2268278T2−654405712T3+10619007407539T4−654405712p4T5−2268278p8T6−1396p12T7+p16T8 |
| 41 | D4×C2 | 1−2317228T2+5437495988070T4−2317228p8T6+p16T8 |
| 43 | D4 | (1+316T−3534234T2+316p4T3+p8T4)2 |
| 47 | D4×C2 | 1+168pT+32962802T2+2046329040pT3+225964882234371T4+2046329040p5T5+32962802p8T6+168p13T7+p16T8 |
| 53 | D4×C2 | 1+1038T−12178631T2−2620832706T3+104962282583700T4−2620832706p4T5−12178631p8T6+1038p12T7+p16T8 |
| 59 | D4×C2 | 1+966T+14295473T2+13508950686T3+52502722474692T4+13508950686p4T5+14295473p8T6+966p12T7+p16T8 |
| 61 | D4×C2 | 1−5088T+37832738T2−148587357120T3+780615710940387T4−148587357120p4T5+37832738p8T6−5088p12T7+p16T8 |
| 67 | D4×C2 | 1−14600T+121457326T2−750446307200T3+3707899788833635T4−750446307200p4T5+121457326p8T6−14600p12T7+p16T8 |
| 71 | D4 | (1+4848T+52412546T2+4848p4T3+p8T4)2 |
| 73 | D4×C2 | 1−22584T+263311922T2−2107077488880T3+12726401415363651T4−2107077488880p4T5+263311922p8T6−22584p12T7+p16T8 |
| 79 | D4×C2 | 1−3974T+5512993T2+268723783546T3−2026562936732828T4+268723783546p4T5+5512993p8T6−3974p12T7+p16T8 |
| 83 | D4×C2 | 1−1452506pT2+7047387074675283T4−1452506p9T6+p16T8 |
| 89 | D4×C2 | 1+33156T+547930046T2+6017480251704T3+51993281156793267T4+6017480251704p4T5+547930046p8T6+33156p12T7+p16T8 |
| 97 | D4×C2 | 1−347883310T2+45930093674217747T4−347883310p8T6+p16T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.21113520241450686464224636099, −11.07583073519812671282175951655, −10.99754582046008135712481247391, −10.22762298009413030304431728961, −10.05579358654567040896560908666, −9.701404869765280392685935704482, −9.443278270233122208696910349472, −8.616198391398499759997982866571, −8.513461754460515562636713109758, −8.095716347713537995701107822048, −7.81954727127925057209467155950, −7.36786516011411637452826745338, −6.84024858086050808473345619818, −6.62621496979631768334268126376, −6.51380775269341677071313114921, −5.72389449553646269190787369851, −5.36751440368906582812486783957, −4.88653222506638658314314640790, −4.51235265272485890990695384286, −4.15999634413400173504192926364, −3.43155639102114000304224415141, −3.39742501952175080326639774109, −2.18237728783842648973651337013, −0.44197560749307898514498397904, −0.35861722902111823352446220949,
0.35861722902111823352446220949, 0.44197560749307898514498397904, 2.18237728783842648973651337013, 3.39742501952175080326639774109, 3.43155639102114000304224415141, 4.15999634413400173504192926364, 4.51235265272485890990695384286, 4.88653222506638658314314640790, 5.36751440368906582812486783957, 5.72389449553646269190787369851, 6.51380775269341677071313114921, 6.62621496979631768334268126376, 6.84024858086050808473345619818, 7.36786516011411637452826745338, 7.81954727127925057209467155950, 8.095716347713537995701107822048, 8.513461754460515562636713109758, 8.616198391398499759997982866571, 9.443278270233122208696910349472, 9.701404869765280392685935704482, 10.05579358654567040896560908666, 10.22762298009413030304431728961, 10.99754582046008135712481247391, 11.07583073519812671282175951655, 11.21113520241450686464224636099