Properties

Label 2-4200-1.1-c1-0-26
Degree $2$
Conductor $4200$
Sign $1$
Analytic cond. $33.5371$
Root an. cond. $5.79112$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s + 5·11-s + 2·13-s + 4·17-s + 6·19-s − 21-s − 23-s − 27-s + 29-s + 2·31-s − 5·33-s + 5·37-s − 2·39-s − 7·43-s − 2·47-s + 49-s − 4·51-s − 6·53-s − 6·57-s − 6·59-s + 63-s + 3·67-s + 69-s + 9·71-s − 12·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s + 1.50·11-s + 0.554·13-s + 0.970·17-s + 1.37·19-s − 0.218·21-s − 0.208·23-s − 0.192·27-s + 0.185·29-s + 0.359·31-s − 0.870·33-s + 0.821·37-s − 0.320·39-s − 1.06·43-s − 0.291·47-s + 1/7·49-s − 0.560·51-s − 0.824·53-s − 0.794·57-s − 0.781·59-s + 0.125·63-s + 0.366·67-s + 0.120·69-s + 1.06·71-s − 1.40·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4200\)    =    \(2^{3} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(33.5371\)
Root analytic conductor: \(5.79112\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.112401659\)
\(L(\frac12)\) \(\approx\) \(2.112401659\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 - 5 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 - T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 5 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 7 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 3 T + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 + 12 T + p T^{2} \)
79 \( 1 - 3 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.300715165083183686251932099930, −7.68986221372037210669022920874, −6.82319275657495445073240050673, −6.21436353994088783168836086831, −5.49007012641082590142659135443, −4.70336095172234251567023074614, −3.84621084418436265943616826552, −3.11253720304210457678203595332, −1.61269602419488992717521044241, −0.955876873948560852752992133608, 0.955876873948560852752992133608, 1.61269602419488992717521044241, 3.11253720304210457678203595332, 3.84621084418436265943616826552, 4.70336095172234251567023074614, 5.49007012641082590142659135443, 6.21436353994088783168836086831, 6.82319275657495445073240050673, 7.68986221372037210669022920874, 8.300715165083183686251932099930

Graph of the $Z$-function along the critical line