Properties

Label 2-4205-1.1-c1-0-24
Degree $2$
Conductor $4205$
Sign $1$
Analytic cond. $33.5770$
Root an. cond. $5.79457$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 5-s − 4.23·7-s − 2·9-s + 1.85·11-s − 2·12-s + 3.23·13-s − 15-s + 4·16-s − 1.85·17-s − 6.47·19-s + 2·20-s − 4.23·21-s − 7.85·23-s + 25-s − 5·27-s + 8.47·28-s + 5.47·31-s + 1.85·33-s + 4.23·35-s + 4·36-s − 5.76·37-s + 3.23·39-s − 9.70·41-s + 3.61·43-s − 3.70·44-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.447·5-s − 1.60·7-s − 0.666·9-s + 0.559·11-s − 0.577·12-s + 0.897·13-s − 0.258·15-s + 16-s − 0.449·17-s − 1.48·19-s + 0.447·20-s − 0.924·21-s − 1.63·23-s + 0.200·25-s − 0.962·27-s + 1.60·28-s + 0.982·31-s + 0.322·33-s + 0.716·35-s + 0.666·36-s − 0.947·37-s + 0.518·39-s − 1.51·41-s + 0.551·43-s − 0.559·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4205\)    =    \(5 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(33.5770\)
Root analytic conductor: \(5.79457\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4205,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6139648646\)
\(L(\frac12)\) \(\approx\) \(0.6139648646\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
29 \( 1 \)
good2 \( 1 + 2T^{2} \)
3 \( 1 - T + 3T^{2} \)
7 \( 1 + 4.23T + 7T^{2} \)
11 \( 1 - 1.85T + 11T^{2} \)
13 \( 1 - 3.23T + 13T^{2} \)
17 \( 1 + 1.85T + 17T^{2} \)
19 \( 1 + 6.47T + 19T^{2} \)
23 \( 1 + 7.85T + 23T^{2} \)
31 \( 1 - 5.47T + 31T^{2} \)
37 \( 1 + 5.76T + 37T^{2} \)
41 \( 1 + 9.70T + 41T^{2} \)
43 \( 1 - 3.61T + 43T^{2} \)
47 \( 1 + 9T + 47T^{2} \)
53 \( 1 - 3T + 53T^{2} \)
59 \( 1 + 6.70T + 59T^{2} \)
61 \( 1 - 10.3T + 61T^{2} \)
67 \( 1 - 12.2T + 67T^{2} \)
71 \( 1 - 8.56T + 71T^{2} \)
73 \( 1 + 2.32T + 73T^{2} \)
79 \( 1 - 12.2T + 79T^{2} \)
83 \( 1 - 2.29T + 83T^{2} \)
89 \( 1 - 6.70T + 89T^{2} \)
97 \( 1 + 1.94T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.331127389313440577377472207695, −8.175868242690917280480046892129, −6.69280298464385113273161308301, −6.36818524519496707801981969281, −5.51197108514426980058893554778, −4.33042201889232601851480557248, −3.71084203234995699264682797258, −3.27439670579290600344577135344, −2.08289937260327230825684404471, −0.41242305274089011301832990749, 0.41242305274089011301832990749, 2.08289937260327230825684404471, 3.27439670579290600344577135344, 3.71084203234995699264682797258, 4.33042201889232601851480557248, 5.51197108514426980058893554778, 6.36818524519496707801981969281, 6.69280298464385113273161308301, 8.175868242690917280480046892129, 8.331127389313440577377472207695

Graph of the $Z$-function along the critical line