L(s) = 1 | + 3-s − 2·4-s − 5-s − 4.23·7-s − 2·9-s + 1.85·11-s − 2·12-s + 3.23·13-s − 15-s + 4·16-s − 1.85·17-s − 6.47·19-s + 2·20-s − 4.23·21-s − 7.85·23-s + 25-s − 5·27-s + 8.47·28-s + 5.47·31-s + 1.85·33-s + 4.23·35-s + 4·36-s − 5.76·37-s + 3.23·39-s − 9.70·41-s + 3.61·43-s − 3.70·44-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 4-s − 0.447·5-s − 1.60·7-s − 0.666·9-s + 0.559·11-s − 0.577·12-s + 0.897·13-s − 0.258·15-s + 16-s − 0.449·17-s − 1.48·19-s + 0.447·20-s − 0.924·21-s − 1.63·23-s + 0.200·25-s − 0.962·27-s + 1.60·28-s + 0.982·31-s + 0.322·33-s + 0.716·35-s + 0.666·36-s − 0.947·37-s + 0.518·39-s − 1.51·41-s + 0.551·43-s − 0.559·44-s + ⋯ |
Λ(s)=(=(4205s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4205s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6139648646 |
L(21) |
≈ |
0.6139648646 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+T |
| 29 | 1 |
good | 2 | 1+2T2 |
| 3 | 1−T+3T2 |
| 7 | 1+4.23T+7T2 |
| 11 | 1−1.85T+11T2 |
| 13 | 1−3.23T+13T2 |
| 17 | 1+1.85T+17T2 |
| 19 | 1+6.47T+19T2 |
| 23 | 1+7.85T+23T2 |
| 31 | 1−5.47T+31T2 |
| 37 | 1+5.76T+37T2 |
| 41 | 1+9.70T+41T2 |
| 43 | 1−3.61T+43T2 |
| 47 | 1+9T+47T2 |
| 53 | 1−3T+53T2 |
| 59 | 1+6.70T+59T2 |
| 61 | 1−10.3T+61T2 |
| 67 | 1−12.2T+67T2 |
| 71 | 1−8.56T+71T2 |
| 73 | 1+2.32T+73T2 |
| 79 | 1−12.2T+79T2 |
| 83 | 1−2.29T+83T2 |
| 89 | 1−6.70T+89T2 |
| 97 | 1+1.94T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.331127389313440577377472207695, −8.175868242690917280480046892129, −6.69280298464385113273161308301, −6.36818524519496707801981969281, −5.51197108514426980058893554778, −4.33042201889232601851480557248, −3.71084203234995699264682797258, −3.27439670579290600344577135344, −2.08289937260327230825684404471, −0.41242305274089011301832990749,
0.41242305274089011301832990749, 2.08289937260327230825684404471, 3.27439670579290600344577135344, 3.71084203234995699264682797258, 4.33042201889232601851480557248, 5.51197108514426980058893554778, 6.36818524519496707801981969281, 6.69280298464385113273161308301, 8.175868242690917280480046892129, 8.331127389313440577377472207695