Properties

Label 2-4205-1.1-c1-0-230
Degree $2$
Conductor $4205$
Sign $-1$
Analytic cond. $33.5770$
Root an. cond. $5.79457$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.976·2-s + 2.48·3-s − 1.04·4-s + 5-s − 2.42·6-s + 2.05·7-s + 2.97·8-s + 3.18·9-s − 0.976·10-s − 5.67·11-s − 2.60·12-s − 5.65·13-s − 2.00·14-s + 2.48·15-s − 0.809·16-s − 2.55·17-s − 3.11·18-s + 6.20·19-s − 1.04·20-s + 5.11·21-s + 5.54·22-s − 4.11·23-s + 7.40·24-s + 25-s + 5.51·26-s + 0.471·27-s − 2.15·28-s + ⋯
L(s)  = 1  − 0.690·2-s + 1.43·3-s − 0.523·4-s + 0.447·5-s − 0.991·6-s + 0.777·7-s + 1.05·8-s + 1.06·9-s − 0.308·10-s − 1.71·11-s − 0.752·12-s − 1.56·13-s − 0.536·14-s + 0.642·15-s − 0.202·16-s − 0.619·17-s − 0.733·18-s + 1.42·19-s − 0.234·20-s + 1.11·21-s + 1.18·22-s − 0.858·23-s + 1.51·24-s + 0.200·25-s + 1.08·26-s + 0.0907·27-s − 0.406·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4205\)    =    \(5 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(33.5770\)
Root analytic conductor: \(5.79457\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4205,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
29 \( 1 \)
good2 \( 1 + 0.976T + 2T^{2} \)
3 \( 1 - 2.48T + 3T^{2} \)
7 \( 1 - 2.05T + 7T^{2} \)
11 \( 1 + 5.67T + 11T^{2} \)
13 \( 1 + 5.65T + 13T^{2} \)
17 \( 1 + 2.55T + 17T^{2} \)
19 \( 1 - 6.20T + 19T^{2} \)
23 \( 1 + 4.11T + 23T^{2} \)
31 \( 1 + 0.0152T + 31T^{2} \)
37 \( 1 - 1.55T + 37T^{2} \)
41 \( 1 - 2.39T + 41T^{2} \)
43 \( 1 + 8.83T + 43T^{2} \)
47 \( 1 - 2.04T + 47T^{2} \)
53 \( 1 - 0.225T + 53T^{2} \)
59 \( 1 - 11.6T + 59T^{2} \)
61 \( 1 + 8.92T + 61T^{2} \)
67 \( 1 + 14.8T + 67T^{2} \)
71 \( 1 + 0.755T + 71T^{2} \)
73 \( 1 + 1.50T + 73T^{2} \)
79 \( 1 + 8.03T + 79T^{2} \)
83 \( 1 + 3.54T + 83T^{2} \)
89 \( 1 + 4.85T + 89T^{2} \)
97 \( 1 + 3.67T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.075804342423567208160670955584, −7.64746998121193715051740505789, −7.17340216489551690181667690359, −5.56269083238057003772290452989, −4.97421893178366825443400350608, −4.30426576554823597798671299951, −3.05716811826567700731819249045, −2.40028596084873176662339744613, −1.61266858504383034718000330026, 0, 1.61266858504383034718000330026, 2.40028596084873176662339744613, 3.05716811826567700731819249045, 4.30426576554823597798671299951, 4.97421893178366825443400350608, 5.56269083238057003772290452989, 7.17340216489551690181667690359, 7.64746998121193715051740505789, 8.075804342423567208160670955584

Graph of the $Z$-function along the critical line