Properties

Label 2-425-1.1-c1-0-22
Degree $2$
Conductor $425$
Sign $-1$
Analytic cond. $3.39364$
Root an. cond. $1.84218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s − 6-s + 7-s − 3·8-s − 2·9-s − 4·11-s + 12-s − 13-s + 14-s − 16-s + 17-s − 2·18-s − 6·19-s − 21-s − 4·22-s + 3·24-s − 26-s + 5·27-s − 28-s − 7·31-s + 5·32-s + 4·33-s + 34-s + 2·36-s − 4·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s + 0.377·7-s − 1.06·8-s − 2/3·9-s − 1.20·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s − 1/4·16-s + 0.242·17-s − 0.471·18-s − 1.37·19-s − 0.218·21-s − 0.852·22-s + 0.612·24-s − 0.196·26-s + 0.962·27-s − 0.188·28-s − 1.25·31-s + 0.883·32-s + 0.696·33-s + 0.171·34-s + 1/3·36-s − 0.657·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(425\)    =    \(5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(3.39364\)
Root analytic conductor: \(1.84218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 425,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 - T \)
good2 \( 1 - T + p T^{2} \)
3 \( 1 + T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 7 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 11 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 11 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88699037704424007632529858894, −10.00274214474902643237473303713, −8.767108830317735104749870628427, −8.096051951075916319409687404922, −6.70482273591315164032339359840, −5.52444896694005295885113213325, −5.12899488075439962769385340399, −3.90896705516907760422844694751, −2.54297039050092279851435376105, 0, 2.54297039050092279851435376105, 3.90896705516907760422844694751, 5.12899488075439962769385340399, 5.52444896694005295885113213325, 6.70482273591315164032339359840, 8.096051951075916319409687404922, 8.767108830317735104749870628427, 10.00274214474902643237473303713, 10.88699037704424007632529858894

Graph of the $Z$-function along the critical line