L(s) = 1 | + 2-s − 3-s − 4-s − 6-s + 7-s − 3·8-s − 2·9-s − 4·11-s + 12-s − 13-s + 14-s − 16-s + 17-s − 2·18-s − 6·19-s − 21-s − 4·22-s + 3·24-s − 26-s + 5·27-s − 28-s − 7·31-s + 5·32-s + 4·33-s + 34-s + 2·36-s − 4·37-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s + 0.377·7-s − 1.06·8-s − 2/3·9-s − 1.20·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s − 1/4·16-s + 0.242·17-s − 0.471·18-s − 1.37·19-s − 0.218·21-s − 0.852·22-s + 0.612·24-s − 0.196·26-s + 0.962·27-s − 0.188·28-s − 1.25·31-s + 0.883·32-s + 0.696·33-s + 0.171·34-s + 1/3·36-s − 0.657·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 - T \) |
good | 2 | \( 1 - T + p T^{2} \) |
| 3 | \( 1 + T + p T^{2} \) |
| 7 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + T + p T^{2} \) |
| 19 | \( 1 + 6 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + 7 T + p T^{2} \) |
| 37 | \( 1 + 4 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 6 T + p T^{2} \) |
| 53 | \( 1 - 11 T + p T^{2} \) |
| 59 | \( 1 - 8 T + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 - 8 T + p T^{2} \) |
| 71 | \( 1 - 7 T + p T^{2} \) |
| 73 | \( 1 - 4 T + p T^{2} \) |
| 79 | \( 1 + 11 T + p T^{2} \) |
| 83 | \( 1 + 8 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 16 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.88699037704424007632529858894, −10.00274214474902643237473303713, −8.767108830317735104749870628427, −8.096051951075916319409687404922, −6.70482273591315164032339359840, −5.52444896694005295885113213325, −5.12899488075439962769385340399, −3.90896705516907760422844694751, −2.54297039050092279851435376105, 0,
2.54297039050092279851435376105, 3.90896705516907760422844694751, 5.12899488075439962769385340399, 5.52444896694005295885113213325, 6.70482273591315164032339359840, 8.096051951075916319409687404922, 8.767108830317735104749870628427, 10.00274214474902643237473303713, 10.88699037704424007632529858894