L(s) = 1 | + 2.60i·2-s − 1.18i·3-s − 4.77·4-s + 3.07·6-s − 3.53i·7-s − 7.21i·8-s + 1.60·9-s + 2.94·11-s + 5.64i·12-s + 4.01i·13-s + 9.20·14-s + 9.23·16-s + i·17-s + 4.17i·18-s + 6.97·19-s + ⋯ |
L(s) = 1 | + 1.84i·2-s − 0.682i·3-s − 2.38·4-s + 1.25·6-s − 1.33i·7-s − 2.55i·8-s + 0.534·9-s + 0.888·11-s + 1.62i·12-s + 1.11i·13-s + 2.45·14-s + 2.30·16-s + 0.242i·17-s + 0.982i·18-s + 1.60·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11133 + 0.686841i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11133 + 0.686841i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 - iT \) |
good | 2 | \( 1 - 2.60iT - 2T^{2} \) |
| 3 | \( 1 + 1.18iT - 3T^{2} \) |
| 7 | \( 1 + 3.53iT - 7T^{2} \) |
| 11 | \( 1 - 2.94T + 11T^{2} \) |
| 13 | \( 1 - 4.01iT - 13T^{2} \) |
| 19 | \( 1 - 6.97T + 19T^{2} \) |
| 23 | \( 1 + 6.12iT - 23T^{2} \) |
| 29 | \( 1 + 5.30T + 29T^{2} \) |
| 31 | \( 1 - 6.49T + 31T^{2} \) |
| 37 | \( 1 + 3.43iT - 37T^{2} \) |
| 41 | \( 1 - 4.61T + 41T^{2} \) |
| 43 | \( 1 - 10.2iT - 43T^{2} \) |
| 47 | \( 1 + 3.67iT - 47T^{2} \) |
| 53 | \( 1 + 6.77iT - 53T^{2} \) |
| 59 | \( 1 + 9.92T + 59T^{2} \) |
| 61 | \( 1 + 2.36T + 61T^{2} \) |
| 67 | \( 1 - 9.56iT - 67T^{2} \) |
| 71 | \( 1 - 5.51T + 71T^{2} \) |
| 73 | \( 1 - 2.00iT - 73T^{2} \) |
| 79 | \( 1 + 10.5T + 79T^{2} \) |
| 83 | \( 1 - 9.07iT - 83T^{2} \) |
| 89 | \( 1 + 2.63T + 89T^{2} \) |
| 97 | \( 1 + 5.86iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.43210721596858629466466408306, −9.990754210258589083741113749453, −9.298604174750196093874098908080, −8.158411995363067398596717412508, −7.31557843041070624485363852699, −6.87287151942463214187884599847, −6.11819981016611825560801935751, −4.62538315514944369514576233336, −3.96962045639960560314002283185, −1.08643592367414973503254490501,
1.40673212829639312385410396829, 2.88374759307038340463624944815, 3.67483966662507325573209796404, 4.89797794904517268884112418508, 5.70037057967726403412558192624, 7.68284614012553487898814891924, 9.022280041372009947997764724996, 9.420240838368438067114765426022, 10.12657452675738637520919582224, 11.09931396819239483260908206238