L(s) = 1 | + 2.60i·2-s − 1.18i·3-s − 4.77·4-s + 3.07·6-s − 3.53i·7-s − 7.21i·8-s + 1.60·9-s + 2.94·11-s + 5.64i·12-s + 4.01i·13-s + 9.20·14-s + 9.23·16-s + i·17-s + 4.17i·18-s + 6.97·19-s + ⋯ |
L(s) = 1 | + 1.84i·2-s − 0.682i·3-s − 2.38·4-s + 1.25·6-s − 1.33i·7-s − 2.55i·8-s + 0.534·9-s + 0.888·11-s + 1.62i·12-s + 1.11i·13-s + 2.45·14-s + 2.30·16-s + 0.242i·17-s + 0.982i·18-s + 1.60·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(324,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.11133+0.686841i |
L(21) |
≈ |
1.11133+0.686841i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1−iT |
good | 2 | 1−2.60iT−2T2 |
| 3 | 1+1.18iT−3T2 |
| 7 | 1+3.53iT−7T2 |
| 11 | 1−2.94T+11T2 |
| 13 | 1−4.01iT−13T2 |
| 19 | 1−6.97T+19T2 |
| 23 | 1+6.12iT−23T2 |
| 29 | 1+5.30T+29T2 |
| 31 | 1−6.49T+31T2 |
| 37 | 1+3.43iT−37T2 |
| 41 | 1−4.61T+41T2 |
| 43 | 1−10.2iT−43T2 |
| 47 | 1+3.67iT−47T2 |
| 53 | 1+6.77iT−53T2 |
| 59 | 1+9.92T+59T2 |
| 61 | 1+2.36T+61T2 |
| 67 | 1−9.56iT−67T2 |
| 71 | 1−5.51T+71T2 |
| 73 | 1−2.00iT−73T2 |
| 79 | 1+10.5T+79T2 |
| 83 | 1−9.07iT−83T2 |
| 89 | 1+2.63T+89T2 |
| 97 | 1+5.86iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.43210721596858629466466408306, −9.990754210258589083741113749453, −9.298604174750196093874098908080, −8.158411995363067398596717412508, −7.31557843041070624485363852699, −6.87287151942463214187884599847, −6.11819981016611825560801935751, −4.62538315514944369514576233336, −3.96962045639960560314002283185, −1.08643592367414973503254490501,
1.40673212829639312385410396829, 2.88374759307038340463624944815, 3.67483966662507325573209796404, 4.89797794904517268884112418508, 5.70037057967726403412558192624, 7.68284614012553487898814891924, 9.022280041372009947997764724996, 9.420240838368438067114765426022, 10.12657452675738637520919582224, 11.09931396819239483260908206238