L(s) = 1 | − 2·2-s − 3·4-s + 8·8-s + 9-s + 2·13-s + 2·16-s − 2·17-s − 2·18-s + 12·19-s − 4·26-s − 8·32-s + 4·34-s − 3·36-s − 24·38-s − 8·43-s + 40·47-s + 23·49-s − 6·52-s − 10·53-s − 4·59-s − 6·64-s + 24·67-s + 6·68-s + 8·72-s − 36·76-s − 3·81-s − 20·83-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 3/2·4-s + 2.82·8-s + 1/3·9-s + 0.554·13-s + 1/2·16-s − 0.485·17-s − 0.471·18-s + 2.75·19-s − 0.784·26-s − 1.41·32-s + 0.685·34-s − 1/2·36-s − 3.89·38-s − 1.21·43-s + 5.83·47-s + 23/7·49-s − 0.832·52-s − 1.37·53-s − 0.520·59-s − 3/4·64-s + 2.93·67-s + 0.727·68-s + 0.942·72-s − 4.12·76-s − 1/3·81-s − 2.19·83-s + ⋯ |
Λ(s)=(=((512⋅176)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((512⋅176)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.4954030794 |
L(21) |
≈ |
0.4954030794 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+2T+15T2−36T3+15pT4+2p2T5+p3T6 |
good | 2 | (1+T+3T2+3T3+3pT4+p2T5+p3T6)2 |
| 3 | 1−T2+4T4+7T6+4p2T8−p4T10+p6T12 |
| 7 | 1−23T2+286T4−2369T6+286p2T8−23p4T10+p6T12 |
| 11 | 1+203T4−428T6+203p2T8+p6T12 |
| 13 | (1−T+2pT2−3T3+2p2T4−p2T5+p3T6)2 |
| 19 | (1−6T+41T2−128T3+41pT4−6p2T5+p3T6)2 |
| 23 | 1−84T2+3203T4−82532T6+3203p2T8−84p4T10+p6T12 |
| 29 | 1−2pT2+1791T4−54028T6+1791p2T8−2p5T10+p6T12 |
| 31 | 1−97T2+4756T4−166345T6+4756p2T8−97p4T10+p6T12 |
| 37 | 1−78T2+3311T4−131684T6+3311p2T8−78p4T10+p6T12 |
| 41 | 1−146T2+11847T4−591644T6+11847p2T8−146p4T10+p6T12 |
| 43 | (1+4T+41T2−108T3+41pT4+4p2T5+p3T6)2 |
| 47 | (1−20T+261T2−2088T3+261pT4−20p2T5+p3T6)2 |
| 53 | (1+5T+90T2+573T3+90pT4+5p2T5+p3T6)2 |
| 59 | (1+2T+133T2+216T3+133pT4+2p2T5+p3T6)2 |
| 61 | 1−138T2+13191T4−929068T6+13191p2T8−138p4T10+p6T12 |
| 67 | (1−12T+233T2−1592T3+233pT4−12p2T5+p3T6)2 |
| 71 | 1−335T2+50838T4−4555673T6+50838p2T8−335p4T10+p6T12 |
| 73 | 1−406T2+70919T4−6803988T6+70919p2T8−406p4T10+p6T12 |
| 79 | 1−339T2+51446T4−4883081T6+51446p2T8−339p4T10+p6T12 |
| 83 | (1+10T+149T2+1844T3+149pT4+10p2T5+p3T6)2 |
| 89 | (1+4T+263T2+692T3+263pT4+4p2T5+p3T6)2 |
| 97 | 1−250T2+48079T4−5208940T6+48079p2T8−250p4T10+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.10133655695673974867401004248, −6.08538601996168966526959932757, −5.52188874781743861318658386003, −5.47778936992801384962393316123, −5.20037599032290634139940591865, −5.19398553718025902749997857048, −5.12812709971993763825023292629, −4.81725843405412052491277975555, −4.60195739282756116414221586722, −4.29055831641941957705637513403, −4.11501371302613265494326630782, −4.05394989446714981212819123688, −3.79095830955073828962750212025, −3.75554655579716091157645102437, −3.46657527955908020102966059679, −3.23209841217578580637727543108, −2.72034273614031902017120468294, −2.57184021284075513317618326857, −2.52046630249875102085205311784, −2.31235295365373587138834109000, −1.60232175629293469886525525029, −1.36178026124117959750039323678, −0.925795146808570749538986615168, −0.912105174608685865190191561326, −0.36731966096398744806428901814,
0.36731966096398744806428901814, 0.912105174608685865190191561326, 0.925795146808570749538986615168, 1.36178026124117959750039323678, 1.60232175629293469886525525029, 2.31235295365373587138834109000, 2.52046630249875102085205311784, 2.57184021284075513317618326857, 2.72034273614031902017120468294, 3.23209841217578580637727543108, 3.46657527955908020102966059679, 3.75554655579716091157645102437, 3.79095830955073828962750212025, 4.05394989446714981212819123688, 4.11501371302613265494326630782, 4.29055831641941957705637513403, 4.60195739282756116414221586722, 4.81725843405412052491277975555, 5.12812709971993763825023292629, 5.19398553718025902749997857048, 5.20037599032290634139940591865, 5.47778936992801384962393316123, 5.52188874781743861318658386003, 6.08538601996168966526959932757, 6.10133655695673974867401004248
Plot not available for L-functions of degree greater than 10.