L(s) = 1 | + 1.48·2-s − 3.29i·3-s + 0.193·4-s − 4.87i·6-s − 2.22i·7-s − 2.67·8-s − 7.83·9-s + 2.86i·11-s − 0.638i·12-s + 2.28·13-s − 3.29i·14-s − 4.35·16-s + (3.15 − 2.65i)17-s − 11.5·18-s + 5.76·19-s + ⋯ |
L(s) = 1 | + 1.04·2-s − 1.90i·3-s + 0.0969·4-s − 1.99i·6-s − 0.839i·7-s − 0.945·8-s − 2.61·9-s + 0.862i·11-s − 0.184i·12-s + 0.634·13-s − 0.879i·14-s − 1.08·16-s + (0.765 − 0.643i)17-s − 2.73·18-s + 1.32·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(−0.765+0.643i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(−0.765+0.643i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
−0.765+0.643i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), −0.765+0.643i)
|
Particular Values
L(1) |
≈ |
0.639088−1.75366i |
L(21) |
≈ |
0.639088−1.75366i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−3.15+2.65i)T |
good | 2 | 1−1.48T+2T2 |
| 3 | 1+3.29iT−3T2 |
| 7 | 1+2.22iT−7T2 |
| 11 | 1−2.86iT−11T2 |
| 13 | 1−2.28T+13T2 |
| 19 | 1−5.76T+19T2 |
| 23 | 1+1.58iT−23T2 |
| 29 | 1+9.23iT−29T2 |
| 31 | 1−1.15iT−31T2 |
| 37 | 1+0.514iT−37T2 |
| 41 | 1+7.09iT−41T2 |
| 43 | 1+7.89T+43T2 |
| 47 | 1−3.03T+47T2 |
| 53 | 1−5.73T+53T2 |
| 59 | 1+7.50T+59T2 |
| 61 | 1−11.8iT−61T2 |
| 67 | 1−7.35T+67T2 |
| 71 | 1−8.80iT−71T2 |
| 73 | 1−2.65iT−73T2 |
| 79 | 1−11.4iT−79T2 |
| 83 | 1−3.08T+83T2 |
| 89 | 1−2.15T+89T2 |
| 97 | 1+8.72iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.47609297996199021195190339686, −9.963663646947963552144440333679, −8.744962564256339881819426112396, −7.64203025291849273891202041040, −7.06994747418436006377180009572, −6.08538601996168966526959932757, −5.20037599032290634139940591865, −3.75554655579716091157645102437, −2.52046630249875102085205311784, −0.912105174608685865190191561326,
3.23209841217578580637727543108, 3.46657527955908020102966059679, 4.81725843405412052491277975555, 5.47778936992801384962393316123, 6.10133655695673974867401004248, 8.284204554202767961512558465371, 9.001998240742008648035340390595, 9.672668978451985835844495248360, 10.73523495519081327458972201026, 11.52284607153626153384823842564