L(s) = 1 | − i·2-s + (−1 + i)3-s + 4-s + (1 + i)6-s + (−3 − 3i)7-s − 3i·8-s + i·9-s + (−3 − 3i)11-s + (−1 + i)12-s + (−3 + 3i)14-s − 16-s + (4 − i)17-s + 18-s − 6i·19-s + 6·21-s + (−3 + 3i)22-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−0.577 + 0.577i)3-s + 0.5·4-s + (0.408 + 0.408i)6-s + (−1.13 − 1.13i)7-s − 1.06i·8-s + 0.333i·9-s + (−0.904 − 0.904i)11-s + (−0.288 + 0.288i)12-s + (−0.801 + 0.801i)14-s − 0.250·16-s + (0.970 − 0.242i)17-s + 0.235·18-s − 1.37i·19-s + 1.30·21-s + (−0.639 + 0.639i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.615 + 0.788i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.398624 - 0.816972i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.398624 - 0.816972i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-4 + i)T \) |
good | 2 | \( 1 + iT - 2T^{2} \) |
| 3 | \( 1 + (1 - i)T - 3iT^{2} \) |
| 7 | \( 1 + (3 + 3i)T + 7iT^{2} \) |
| 11 | \( 1 + (3 + 3i)T + 11iT^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 19 | \( 1 + 6iT - 19T^{2} \) |
| 23 | \( 1 + (1 + i)T + 23iT^{2} \) |
| 29 | \( 1 + (-3 + 3i)T - 29iT^{2} \) |
| 31 | \( 1 + (1 - i)T - 31iT^{2} \) |
| 37 | \( 1 + (3 - 3i)T - 37iT^{2} \) |
| 41 | \( 1 + (3 + 3i)T + 41iT^{2} \) |
| 43 | \( 1 - 12iT - 43T^{2} \) |
| 47 | \( 1 - 2T + 47T^{2} \) |
| 53 | \( 1 + 2iT - 53T^{2} \) |
| 59 | \( 1 + 6iT - 59T^{2} \) |
| 61 | \( 1 + (-1 - i)T + 61iT^{2} \) |
| 67 | \( 1 - 6T + 67T^{2} \) |
| 71 | \( 1 + (-3 + 3i)T - 71iT^{2} \) |
| 73 | \( 1 + (-3 + 3i)T - 73iT^{2} \) |
| 79 | \( 1 + (-7 - 7i)T + 79iT^{2} \) |
| 83 | \( 1 - 4iT - 83T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (3 - 3i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85288534787206863613664780116, −10.17638680979767677528936888510, −9.637382338936088951922805099041, −8.023010886338626353670450989520, −7.01810061752613472156754052628, −6.11787150208091906409812956620, −4.90685685004734445533013436417, −3.62961153618714600773447475715, −2.74580015880356677509674999510, −0.58750809406244438518557466809,
2.02401108121806693620180645918, 3.34266943572032839851220758708, 5.43728157632445237146996716750, 5.84959385588803731290290142881, 6.76714988496951488910683409710, 7.52990186095398680341139091394, 8.554667927277463650858942720792, 9.735353948737950290286309512124, 10.52651583056021977505408685280, 11.92351263353758655517547923465