L(s) = 1 | − i·2-s + (−1 + i)3-s + 4-s + (1 + i)6-s + (−3 − 3i)7-s − 3i·8-s + i·9-s + (−3 − 3i)11-s + (−1 + i)12-s + (−3 + 3i)14-s − 16-s + (4 − i)17-s + 18-s − 6i·19-s + 6·21-s + (−3 + 3i)22-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−0.577 + 0.577i)3-s + 0.5·4-s + (0.408 + 0.408i)6-s + (−1.13 − 1.13i)7-s − 1.06i·8-s + 0.333i·9-s + (−0.904 − 0.904i)11-s + (−0.288 + 0.288i)12-s + (−0.801 + 0.801i)14-s − 0.250·16-s + (0.970 − 0.242i)17-s + 0.235·18-s − 1.37i·19-s + 1.30·21-s + (−0.639 + 0.639i)22-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(−0.615+0.788i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(−0.615+0.788i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
−0.615+0.788i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(276,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), −0.615+0.788i)
|
Particular Values
L(1) |
≈ |
0.398624−0.816972i |
L(21) |
≈ |
0.398624−0.816972i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−4+i)T |
good | 2 | 1+iT−2T2 |
| 3 | 1+(1−i)T−3iT2 |
| 7 | 1+(3+3i)T+7iT2 |
| 11 | 1+(3+3i)T+11iT2 |
| 13 | 1+13T2 |
| 19 | 1+6iT−19T2 |
| 23 | 1+(1+i)T+23iT2 |
| 29 | 1+(−3+3i)T−29iT2 |
| 31 | 1+(1−i)T−31iT2 |
| 37 | 1+(3−3i)T−37iT2 |
| 41 | 1+(3+3i)T+41iT2 |
| 43 | 1−12iT−43T2 |
| 47 | 1−2T+47T2 |
| 53 | 1+2iT−53T2 |
| 59 | 1+6iT−59T2 |
| 61 | 1+(−1−i)T+61iT2 |
| 67 | 1−6T+67T2 |
| 71 | 1+(−3+3i)T−71iT2 |
| 73 | 1+(−3+3i)T−73iT2 |
| 79 | 1+(−7−7i)T+79iT2 |
| 83 | 1−4iT−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+(3−3i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85288534787206863613664780116, −10.17638680979767677528936888510, −9.637382338936088951922805099041, −8.023010886338626353670450989520, −7.01810061752613472156754052628, −6.11787150208091906409812956620, −4.90685685004734445533013436417, −3.62961153618714600773447475715, −2.74580015880356677509674999510, −0.58750809406244438518557466809,
2.02401108121806693620180645918, 3.34266943572032839851220758708, 5.43728157632445237146996716750, 5.84959385588803731290290142881, 6.76714988496951488910683409710, 7.52990186095398680341139091394, 8.554667927277463650858942720792, 9.735353948737950290286309512124, 10.52651583056021977505408685280, 11.92351263353758655517547923465