L(s) = 1 | + 1.68i·2-s + (1.27 + 1.27i)3-s − 0.830·4-s + (−2.14 + 2.14i)6-s + (−1.92 + 1.92i)7-s + 1.96i·8-s + 0.249i·9-s + (−0.0173 + 0.0173i)11-s + (−1.05 − 1.05i)12-s + 3.62·13-s + (−3.24 − 3.24i)14-s − 4.97·16-s + (−3.90 + 1.33i)17-s − 0.419·18-s + 0.603i·19-s + ⋯ |
L(s) = 1 | + 1.18i·2-s + (0.735 + 0.735i)3-s − 0.415·4-s + (−0.875 + 0.875i)6-s + (−0.728 + 0.728i)7-s + 0.695i·8-s + 0.0830i·9-s + (−0.00524 + 0.00524i)11-s + (−0.305 − 0.305i)12-s + 1.00·13-s + (−0.866 − 0.866i)14-s − 1.24·16-s + (−0.946 + 0.323i)17-s − 0.0987·18-s + 0.138i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 - 0.327i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.944 - 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.282613 + 1.67750i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.282613 + 1.67750i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (3.90 - 1.33i)T \) |
good | 2 | \( 1 - 1.68iT - 2T^{2} \) |
| 3 | \( 1 + (-1.27 - 1.27i)T + 3iT^{2} \) |
| 7 | \( 1 + (1.92 - 1.92i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.0173 - 0.0173i)T - 11iT^{2} \) |
| 13 | \( 1 - 3.62T + 13T^{2} \) |
| 19 | \( 1 - 0.603iT - 19T^{2} \) |
| 23 | \( 1 + (-1.94 + 1.94i)T - 23iT^{2} \) |
| 29 | \( 1 + (-3.01 - 3.01i)T + 29iT^{2} \) |
| 31 | \( 1 + (0.422 + 0.422i)T + 31iT^{2} \) |
| 37 | \( 1 + (-7.50 - 7.50i)T + 37iT^{2} \) |
| 41 | \( 1 + (-5.07 + 5.07i)T - 41iT^{2} \) |
| 43 | \( 1 + 12.0iT - 43T^{2} \) |
| 47 | \( 1 + 11.0T + 47T^{2} \) |
| 53 | \( 1 - 2.05iT - 53T^{2} \) |
| 59 | \( 1 + 0.926iT - 59T^{2} \) |
| 61 | \( 1 + (-8.41 + 8.41i)T - 61iT^{2} \) |
| 67 | \( 1 - 5.79T + 67T^{2} \) |
| 71 | \( 1 + (3.84 + 3.84i)T + 71iT^{2} \) |
| 73 | \( 1 + (-2.88 - 2.88i)T + 73iT^{2} \) |
| 79 | \( 1 + (-9.68 + 9.68i)T - 79iT^{2} \) |
| 83 | \( 1 - 12.1iT - 83T^{2} \) |
| 89 | \( 1 + 7.11T + 89T^{2} \) |
| 97 | \( 1 + (-5.01 - 5.01i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.48095734878408961810680718652, −10.50237611821564192309745886471, −9.346860442075471723268311248827, −8.763000572957161269038009777325, −8.115780675191957449781313634504, −6.68019588733635222225959363341, −6.19465019792869481268167325853, −4.97312596111349686732352829167, −3.72802802400603340031608880037, −2.53470155161430605108931351630,
1.07038090426878260619949525002, 2.40725948490643318158253827361, 3.32409029753353059268995043521, 4.39751252830110353611587318084, 6.31818665438502554196585366480, 7.07500064357585994204068076252, 8.100626074128502113965630360794, 9.178963238644997150485438093086, 9.942771538961050831882192607802, 10.99954456983189083452633412283