Properties

Label 2-425-17.13-c1-0-4
Degree 22
Conductor 425425
Sign 0.9440.327i-0.944 - 0.327i
Analytic cond. 3.393643.39364
Root an. cond. 1.842181.84218
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.68i·2-s + (1.27 + 1.27i)3-s − 0.830·4-s + (−2.14 + 2.14i)6-s + (−1.92 + 1.92i)7-s + 1.96i·8-s + 0.249i·9-s + (−0.0173 + 0.0173i)11-s + (−1.05 − 1.05i)12-s + 3.62·13-s + (−3.24 − 3.24i)14-s − 4.97·16-s + (−3.90 + 1.33i)17-s − 0.419·18-s + 0.603i·19-s + ⋯
L(s)  = 1  + 1.18i·2-s + (0.735 + 0.735i)3-s − 0.415·4-s + (−0.875 + 0.875i)6-s + (−0.728 + 0.728i)7-s + 0.695i·8-s + 0.0830i·9-s + (−0.00524 + 0.00524i)11-s + (−0.305 − 0.305i)12-s + 1.00·13-s + (−0.866 − 0.866i)14-s − 1.24·16-s + (−0.946 + 0.323i)17-s − 0.0987·18-s + 0.138i·19-s + ⋯

Functional equation

Λ(s)=(425s/2ΓC(s)L(s)=((0.9440.327i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 - 0.327i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(425s/2ΓC(s+1/2)L(s)=((0.9440.327i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.944 - 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 425425    =    52175^{2} \cdot 17
Sign: 0.9440.327i-0.944 - 0.327i
Analytic conductor: 3.393643.39364
Root analytic conductor: 1.842181.84218
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ425(251,)\chi_{425} (251, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 425, ( :1/2), 0.9440.327i)(2,\ 425,\ (\ :1/2),\ -0.944 - 0.327i)

Particular Values

L(1)L(1) \approx 0.282613+1.67750i0.282613 + 1.67750i
L(12)L(\frac12) \approx 0.282613+1.67750i0.282613 + 1.67750i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
17 1+(3.901.33i)T 1 + (3.90 - 1.33i)T
good2 11.68iT2T2 1 - 1.68iT - 2T^{2}
3 1+(1.271.27i)T+3iT2 1 + (-1.27 - 1.27i)T + 3iT^{2}
7 1+(1.921.92i)T7iT2 1 + (1.92 - 1.92i)T - 7iT^{2}
11 1+(0.01730.0173i)T11iT2 1 + (0.0173 - 0.0173i)T - 11iT^{2}
13 13.62T+13T2 1 - 3.62T + 13T^{2}
19 10.603iT19T2 1 - 0.603iT - 19T^{2}
23 1+(1.94+1.94i)T23iT2 1 + (-1.94 + 1.94i)T - 23iT^{2}
29 1+(3.013.01i)T+29iT2 1 + (-3.01 - 3.01i)T + 29iT^{2}
31 1+(0.422+0.422i)T+31iT2 1 + (0.422 + 0.422i)T + 31iT^{2}
37 1+(7.507.50i)T+37iT2 1 + (-7.50 - 7.50i)T + 37iT^{2}
41 1+(5.07+5.07i)T41iT2 1 + (-5.07 + 5.07i)T - 41iT^{2}
43 1+12.0iT43T2 1 + 12.0iT - 43T^{2}
47 1+11.0T+47T2 1 + 11.0T + 47T^{2}
53 12.05iT53T2 1 - 2.05iT - 53T^{2}
59 1+0.926iT59T2 1 + 0.926iT - 59T^{2}
61 1+(8.41+8.41i)T61iT2 1 + (-8.41 + 8.41i)T - 61iT^{2}
67 15.79T+67T2 1 - 5.79T + 67T^{2}
71 1+(3.84+3.84i)T+71iT2 1 + (3.84 + 3.84i)T + 71iT^{2}
73 1+(2.882.88i)T+73iT2 1 + (-2.88 - 2.88i)T + 73iT^{2}
79 1+(9.68+9.68i)T79iT2 1 + (-9.68 + 9.68i)T - 79iT^{2}
83 112.1iT83T2 1 - 12.1iT - 83T^{2}
89 1+7.11T+89T2 1 + 7.11T + 89T^{2}
97 1+(5.015.01i)T+97iT2 1 + (-5.01 - 5.01i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.48095734878408961810680718652, −10.50237611821564192309745886471, −9.346860442075471723268311248827, −8.763000572957161269038009777325, −8.115780675191957449781313634504, −6.68019588733635222225959363341, −6.19465019792869481268167325853, −4.97312596111349686732352829167, −3.72802802400603340031608880037, −2.53470155161430605108931351630, 1.07038090426878260619949525002, 2.40725948490643318158253827361, 3.32409029753353059268995043521, 4.39751252830110353611587318084, 6.31818665438502554196585366480, 7.07500064357585994204068076252, 8.100626074128502113965630360794, 9.178963238644997150485438093086, 9.942771538961050831882192607802, 10.99954456983189083452633412283

Graph of the ZZ-function along the critical line