L(s) = 1 | + 1.68i·2-s + (1.27 + 1.27i)3-s − 0.830·4-s + (−2.14 + 2.14i)6-s + (−1.92 + 1.92i)7-s + 1.96i·8-s + 0.249i·9-s + (−0.0173 + 0.0173i)11-s + (−1.05 − 1.05i)12-s + 3.62·13-s + (−3.24 − 3.24i)14-s − 4.97·16-s + (−3.90 + 1.33i)17-s − 0.419·18-s + 0.603i·19-s + ⋯ |
L(s) = 1 | + 1.18i·2-s + (0.735 + 0.735i)3-s − 0.415·4-s + (−0.875 + 0.875i)6-s + (−0.728 + 0.728i)7-s + 0.695i·8-s + 0.0830i·9-s + (−0.00524 + 0.00524i)11-s + (−0.305 − 0.305i)12-s + 1.00·13-s + (−0.866 − 0.866i)14-s − 1.24·16-s + (−0.946 + 0.323i)17-s − 0.0987·18-s + 0.138i·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(−0.944−0.327i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(−0.944−0.327i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
−0.944−0.327i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), −0.944−0.327i)
|
Particular Values
L(1) |
≈ |
0.282613+1.67750i |
L(21) |
≈ |
0.282613+1.67750i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(3.90−1.33i)T |
good | 2 | 1−1.68iT−2T2 |
| 3 | 1+(−1.27−1.27i)T+3iT2 |
| 7 | 1+(1.92−1.92i)T−7iT2 |
| 11 | 1+(0.0173−0.0173i)T−11iT2 |
| 13 | 1−3.62T+13T2 |
| 19 | 1−0.603iT−19T2 |
| 23 | 1+(−1.94+1.94i)T−23iT2 |
| 29 | 1+(−3.01−3.01i)T+29iT2 |
| 31 | 1+(0.422+0.422i)T+31iT2 |
| 37 | 1+(−7.50−7.50i)T+37iT2 |
| 41 | 1+(−5.07+5.07i)T−41iT2 |
| 43 | 1+12.0iT−43T2 |
| 47 | 1+11.0T+47T2 |
| 53 | 1−2.05iT−53T2 |
| 59 | 1+0.926iT−59T2 |
| 61 | 1+(−8.41+8.41i)T−61iT2 |
| 67 | 1−5.79T+67T2 |
| 71 | 1+(3.84+3.84i)T+71iT2 |
| 73 | 1+(−2.88−2.88i)T+73iT2 |
| 79 | 1+(−9.68+9.68i)T−79iT2 |
| 83 | 1−12.1iT−83T2 |
| 89 | 1+7.11T+89T2 |
| 97 | 1+(−5.01−5.01i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.48095734878408961810680718652, −10.50237611821564192309745886471, −9.346860442075471723268311248827, −8.763000572957161269038009777325, −8.115780675191957449781313634504, −6.68019588733635222225959363341, −6.19465019792869481268167325853, −4.97312596111349686732352829167, −3.72802802400603340031608880037, −2.53470155161430605108931351630,
1.07038090426878260619949525002, 2.40725948490643318158253827361, 3.32409029753353059268995043521, 4.39751252830110353611587318084, 6.31818665438502554196585366480, 7.07500064357585994204068076252, 8.100626074128502113965630360794, 9.178963238644997150485438093086, 9.942771538961050831882192607802, 10.99954456983189083452633412283