L(s) = 1 | − 1.12·2-s + (1.75 − 1.75i)3-s − 0.729·4-s + (−1.97 + 1.97i)6-s + (1.72 + 1.72i)7-s + 3.07·8-s − 3.16i·9-s + (2.57 − 2.57i)11-s + (−1.28 + 1.28i)12-s + 3.64i·13-s + (−1.94 − 1.94i)14-s − 2.00·16-s + (2.79 − 3.03i)17-s + 3.56i·18-s − 2.61i·19-s + ⋯ |
L(s) = 1 | − 0.796·2-s + (1.01 − 1.01i)3-s − 0.364·4-s + (−0.807 + 0.807i)6-s + (0.652 + 0.652i)7-s + 1.08·8-s − 1.05i·9-s + (0.775 − 0.775i)11-s + (−0.369 + 0.369i)12-s + 1.01i·13-s + (−0.520 − 0.520i)14-s − 0.502·16-s + (0.677 − 0.735i)17-s + 0.840i·18-s − 0.599i·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.587+0.809i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(0.587+0.809i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.587+0.809i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), 0.587+0.809i)
|
Particular Values
L(1) |
≈ |
1.13632−0.579471i |
L(21) |
≈ |
1.13632−0.579471i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−2.79+3.03i)T |
good | 2 | 1+1.12T+2T2 |
| 3 | 1+(−1.75+1.75i)T−3iT2 |
| 7 | 1+(−1.72−1.72i)T+7iT2 |
| 11 | 1+(−2.57+2.57i)T−11iT2 |
| 13 | 1−3.64iT−13T2 |
| 19 | 1+2.61iT−19T2 |
| 23 | 1+(−0.993−0.993i)T+23iT2 |
| 29 | 1+(0.601+0.601i)T+29iT2 |
| 31 | 1+(6.67+6.67i)T+31iT2 |
| 37 | 1+(−7.78+7.78i)T−37iT2 |
| 41 | 1+(6.74−6.74i)T−41iT2 |
| 43 | 1+7.47T+43T2 |
| 47 | 1−5.42iT−47T2 |
| 53 | 1−12.9T+53T2 |
| 59 | 1+1.40iT−59T2 |
| 61 | 1+(−0.804+0.804i)T−61iT2 |
| 67 | 1−2.07iT−67T2 |
| 71 | 1+(−8.69−8.69i)T+71iT2 |
| 73 | 1+(1.04−1.04i)T−73iT2 |
| 79 | 1+(6.34−6.34i)T−79iT2 |
| 83 | 1+2.52T+83T2 |
| 89 | 1−1.66T+89T2 |
| 97 | 1+(8.67−8.67i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.19401428807679805022700740138, −9.594061649081853944558351596640, −9.075924835090840917970591137403, −8.392348322412645083146524810534, −7.65093500335397419028579149146, −6.78250995675399693756444793003, −5.33215637939031244556350617931, −3.91189440311182328895623022895, −2.36863978652721378554944774354, −1.21466502385630849746773851360,
1.52469581997684026580208538731, 3.46295834246923675864236430135, 4.25305704806141476845566387557, 5.23725311522524925381536554277, 7.10846361215202124584124110375, 8.093679424519897464697996450570, 8.581017875013666177869256372232, 9.549152981250602679063676154243, 10.23476905696706962649722815907, 10.66233092643000456334175405511