L(s) = 1 | + (0.292 − 0.292i)2-s + (2.41 + i)3-s + 1.82i·4-s + (1 − 0.414i)6-s + (−0.414 − i)7-s + (1.12 + 1.12i)8-s + (2.70 + 2.70i)9-s + (−1 + 0.414i)11-s + (−1.82 + 4.41i)12-s + 1.41i·13-s + (−0.414 − 0.171i)14-s − 3·16-s + (2.82 − 3i)17-s + 1.58·18-s + (3.41 − 3.41i)19-s + ⋯ |
L(s) = 1 | + (0.207 − 0.207i)2-s + (1.39 + 0.577i)3-s + 0.914i·4-s + (0.408 − 0.169i)6-s + (−0.156 − 0.377i)7-s + (0.396 + 0.396i)8-s + (0.902 + 0.902i)9-s + (−0.301 + 0.124i)11-s + (−0.527 + 1.27i)12-s + 0.392i·13-s + (−0.110 − 0.0458i)14-s − 0.750·16-s + (0.685 − 0.727i)17-s + 0.373·18-s + (0.783 − 0.783i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.651 - 0.758i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.651 - 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.10919 + 0.969052i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.10919 + 0.969052i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-2.82 + 3i)T \) |
good | 2 | \( 1 + (-0.292 + 0.292i)T - 2iT^{2} \) |
| 3 | \( 1 + (-2.41 - i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (0.414 + i)T + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (1 - 0.414i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 1.41iT - 13T^{2} \) |
| 19 | \( 1 + (-3.41 + 3.41i)T - 19iT^{2} \) |
| 23 | \( 1 + (3.82 - 1.58i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (1.70 - 4.12i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (3 + 1.24i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-3.53 - 1.46i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (3.12 + 7.53i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-3.41 - 3.41i)T + 43iT^{2} \) |
| 47 | \( 1 + 10.8iT - 47T^{2} \) |
| 53 | \( 1 + (-1 + i)T - 53iT^{2} \) |
| 59 | \( 1 + (4.24 + 4.24i)T + 59iT^{2} \) |
| 61 | \( 1 + (-3.53 - 8.53i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 6.82T + 67T^{2} \) |
| 71 | \( 1 + (-12.0 - 5i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-2.05 + 4.94i)T + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (3.82 - 1.58i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (-0.242 + 0.242i)T - 83iT^{2} \) |
| 89 | \( 1 + 9.41iT - 89T^{2} \) |
| 97 | \( 1 + (2.46 - 5.94i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.37303913887946705054655621260, −10.20173142887619870191747990436, −9.371444665787621601162911346146, −8.654500064107235250136173197101, −7.68728759420289416510957159272, −7.11013807733971123937598147497, −5.17482951676055346458983881819, −4.01106211499401092237501835915, −3.30907651229593327510392918745, −2.30711284092580267515076825826,
1.48978440265783511149900612478, 2.71986756619836849882898427047, 3.95365982836172362509516830293, 5.49026822161374889980868311400, 6.28702476867377199079320141231, 7.59555261752939023237390525775, 8.130638148787462970269261014287, 9.280633543800656593680385182499, 9.900719555642209806992789827211, 10.89375273319578653856606563348