L(s) = 1 | + (1.44 + 1.44i)2-s + (1.22 + 2.95i)3-s + 2.18i·4-s + (−2.50 + 6.03i)6-s + (−1.08 − 0.450i)7-s + (−0.263 + 0.263i)8-s + (−5.09 + 5.09i)9-s + (1.88 − 4.54i)11-s + (−6.44 + 2.66i)12-s − 2.46i·13-s + (−0.921 − 2.22i)14-s + 3.60·16-s + (1.36 + 3.89i)17-s − 14.7·18-s + (−1.44 − 1.44i)19-s + ⋯ |
L(s) = 1 | + (1.02 + 1.02i)2-s + (0.706 + 1.70i)3-s + 1.09i·4-s + (−1.02 + 2.46i)6-s + (−0.411 − 0.170i)7-s + (−0.0931 + 0.0931i)8-s + (−1.69 + 1.69i)9-s + (0.567 − 1.37i)11-s + (−1.85 + 0.770i)12-s − 0.683i·13-s + (−0.246 − 0.594i)14-s + 0.900·16-s + (0.330 + 0.943i)17-s − 3.47·18-s + (−0.331 − 0.331i)19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(−0.865−0.500i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(−0.865−0.500i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
−0.865−0.500i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), −0.865−0.500i)
|
Particular Values
L(1) |
≈ |
0.720693+2.68468i |
L(21) |
≈ |
0.720693+2.68468i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−1.36−3.89i)T |
good | 2 | 1+(−1.44−1.44i)T+2iT2 |
| 3 | 1+(−1.22−2.95i)T+(−2.12+2.12i)T2 |
| 7 | 1+(1.08+0.450i)T+(4.94+4.94i)T2 |
| 11 | 1+(−1.88+4.54i)T+(−7.77−7.77i)T2 |
| 13 | 1+2.46iT−13T2 |
| 19 | 1+(1.44+1.44i)T+19iT2 |
| 23 | 1+(−0.0455+0.109i)T+(−16.2−16.2i)T2 |
| 29 | 1+(−0.984+0.407i)T+(20.5−20.5i)T2 |
| 31 | 1+(−1.06−2.58i)T+(−21.9+21.9i)T2 |
| 37 | 1+(0.885+2.13i)T+(−26.1+26.1i)T2 |
| 41 | 1+(0.662+0.274i)T+(28.9+28.9i)T2 |
| 43 | 1+(7.13−7.13i)T−43iT2 |
| 47 | 1+3.39iT−47T2 |
| 53 | 1+(9.84+9.84i)T+53iT2 |
| 59 | 1+(−1.07+1.07i)T−59iT2 |
| 61 | 1+(−7.46−3.09i)T+(43.1+43.1i)T2 |
| 67 | 1+4.92T+67T2 |
| 71 | 1+(−2.53−6.13i)T+(−50.2+50.2i)T2 |
| 73 | 1+(3.38−1.40i)T+(51.6−51.6i)T2 |
| 79 | 1+(−3.13+7.55i)T+(−55.8−55.8i)T2 |
| 83 | 1+(−4.30−4.30i)T+83iT2 |
| 89 | 1−8.46iT−89T2 |
| 97 | 1+(−4.14+1.71i)T+(68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.39409011757889565563471927983, −10.47776474744047829140186089088, −9.796082439600209822952305908938, −8.607119044540039674795495968373, −8.089590913903604310400722657537, −6.53211028505274154296178906759, −5.65087756316103138372964125429, −4.77552843660092664107534329591, −3.69605154241206494718871792462, −3.24282157514331024793459709928,
1.52242108558737184862374957078, 2.37092671784520788220590253380, 3.40207621309054308589602788246, 4.69000195351767975965409751268, 6.14973529802431092527167900603, 7.01494639686532002284453142717, 7.84188770662085448725282502026, 9.053169549797537822986290360272, 9.936280571477070134046173404169, 11.41137807646777322987400634004