L(s) = 1 | + (1.44 + 1.44i)2-s + (1.22 + 2.95i)3-s + 2.18i·4-s + (−2.50 + 6.03i)6-s + (−1.08 − 0.450i)7-s + (−0.263 + 0.263i)8-s + (−5.09 + 5.09i)9-s + (1.88 − 4.54i)11-s + (−6.44 + 2.66i)12-s − 2.46i·13-s + (−0.921 − 2.22i)14-s + 3.60·16-s + (1.36 + 3.89i)17-s − 14.7·18-s + (−1.44 − 1.44i)19-s + ⋯ |
L(s) = 1 | + (1.02 + 1.02i)2-s + (0.706 + 1.70i)3-s + 1.09i·4-s + (−1.02 + 2.46i)6-s + (−0.411 − 0.170i)7-s + (−0.0931 + 0.0931i)8-s + (−1.69 + 1.69i)9-s + (0.567 − 1.37i)11-s + (−1.85 + 0.770i)12-s − 0.683i·13-s + (−0.246 − 0.594i)14-s + 0.900·16-s + (0.330 + 0.943i)17-s − 3.47·18-s + (−0.331 − 0.331i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.865 - 0.500i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.865 - 0.500i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.720693 + 2.68468i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.720693 + 2.68468i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-1.36 - 3.89i)T \) |
good | 2 | \( 1 + (-1.44 - 1.44i)T + 2iT^{2} \) |
| 3 | \( 1 + (-1.22 - 2.95i)T + (-2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (1.08 + 0.450i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-1.88 + 4.54i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 2.46iT - 13T^{2} \) |
| 19 | \( 1 + (1.44 + 1.44i)T + 19iT^{2} \) |
| 23 | \( 1 + (-0.0455 + 0.109i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-0.984 + 0.407i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-1.06 - 2.58i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (0.885 + 2.13i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (0.662 + 0.274i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (7.13 - 7.13i)T - 43iT^{2} \) |
| 47 | \( 1 + 3.39iT - 47T^{2} \) |
| 53 | \( 1 + (9.84 + 9.84i)T + 53iT^{2} \) |
| 59 | \( 1 + (-1.07 + 1.07i)T - 59iT^{2} \) |
| 61 | \( 1 + (-7.46 - 3.09i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 4.92T + 67T^{2} \) |
| 71 | \( 1 + (-2.53 - 6.13i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (3.38 - 1.40i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-3.13 + 7.55i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (-4.30 - 4.30i)T + 83iT^{2} \) |
| 89 | \( 1 - 8.46iT - 89T^{2} \) |
| 97 | \( 1 + (-4.14 + 1.71i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39409011757889565563471927983, −10.47776474744047829140186089088, −9.796082439600209822952305908938, −8.607119044540039674795495968373, −8.089590913903604310400722657537, −6.53211028505274154296178906759, −5.65087756316103138372964125429, −4.77552843660092664107534329591, −3.69605154241206494718871792462, −3.24282157514331024793459709928,
1.52242108558737184862374957078, 2.37092671784520788220590253380, 3.40207621309054308589602788246, 4.69000195351767975965409751268, 6.14973529802431092527167900603, 7.01494639686532002284453142717, 7.84188770662085448725282502026, 9.053169549797537822986290360272, 9.936280571477070134046173404169, 11.41137807646777322987400634004