L(s) = 1 | + (1.09 − 1.09i)2-s + (−2.77 − 1.15i)3-s − 0.419i·4-s + (−4.32 + 1.79i)6-s + (1.32 + 3.19i)7-s + (1.73 + 1.73i)8-s + (4.27 + 4.27i)9-s + (−3.92 + 1.62i)11-s + (−0.483 + 1.16i)12-s + 0.127i·13-s + (4.96 + 2.05i)14-s + 4.66·16-s + (4.11 − 0.193i)17-s + 9.40·18-s + (1.81 − 1.81i)19-s + ⋯ |
L(s) = 1 | + (0.777 − 0.777i)2-s + (−1.60 − 0.664i)3-s − 0.209i·4-s + (−1.76 + 0.731i)6-s + (0.499 + 1.20i)7-s + (0.614 + 0.614i)8-s + (1.42 + 1.42i)9-s + (−1.18 + 0.489i)11-s + (−0.139 + 0.336i)12-s + 0.0353i·13-s + (1.32 + 0.549i)14-s + 1.16·16-s + (0.998 − 0.0468i)17-s + 2.21·18-s + (0.417 − 0.417i)19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.995−0.0932i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(0.995−0.0932i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.995−0.0932i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), 0.995−0.0932i)
|
Particular Values
L(1) |
≈ |
1.20385+0.0562755i |
L(21) |
≈ |
1.20385+0.0562755i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−4.11+0.193i)T |
good | 2 | 1+(−1.09+1.09i)T−2iT2 |
| 3 | 1+(2.77+1.15i)T+(2.12+2.12i)T2 |
| 7 | 1+(−1.32−3.19i)T+(−4.94+4.94i)T2 |
| 11 | 1+(3.92−1.62i)T+(7.77−7.77i)T2 |
| 13 | 1−0.127iT−13T2 |
| 19 | 1+(−1.81+1.81i)T−19iT2 |
| 23 | 1+(3.00−1.24i)T+(16.2−16.2i)T2 |
| 29 | 1+(1.87−4.53i)T+(−20.5−20.5i)T2 |
| 31 | 1+(−4.95−2.05i)T+(21.9+21.9i)T2 |
| 37 | 1+(−1.63−0.677i)T+(26.1+26.1i)T2 |
| 41 | 1+(−3.85−9.29i)T+(−28.9+28.9i)T2 |
| 43 | 1+(1.79+1.79i)T+43iT2 |
| 47 | 1−4.59iT−47T2 |
| 53 | 1+(1.15−1.15i)T−53iT2 |
| 59 | 1+(4.34+4.34i)T+59iT2 |
| 61 | 1+(1.54+3.73i)T+(−43.1+43.1i)T2 |
| 67 | 1−6.88T+67T2 |
| 71 | 1+(6.66+2.76i)T+(50.2+50.2i)T2 |
| 73 | 1+(−5.59+13.5i)T+(−51.6−51.6i)T2 |
| 79 | 1+(4.75−1.97i)T+(55.8−55.8i)T2 |
| 83 | 1+(10.2−10.2i)T−83iT2 |
| 89 | 1−0.600iT−89T2 |
| 97 | 1+(−2.93+7.09i)T+(−68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.44971952620389337003675759359, −10.82131860114184795124331234783, −9.839659080187629224601340687244, −8.154501890104553171847268895593, −7.44000560504812601792274825655, −6.04911997622779461269710610886, −5.24461382265393835603237419230, −4.75545985596132018919377297920, −2.85998128938122672819820782373, −1.63624094296647318932086455311,
0.791856920807198456671094187236, 3.83224248747553335091928975278, 4.61086329166831663118854708101, 5.51185489174279175088460615606, 6.00834502636766505256026149445, 7.19726231620007273469876434629, 7.929199704415774439867356414224, 10.00859690040254040504358488583, 10.27042832548700614944361770467, 11.07456510179578133721561304093