L(s) = 1 | + (−1.66 − 1.66i)2-s + (1.44 − 0.600i)3-s + 3.53i·4-s + (−3.41 − 1.41i)6-s + (−1.37 + 3.30i)7-s + (2.54 − 2.54i)8-s + (−0.379 + 0.379i)9-s + (2.29 + 0.950i)11-s + (2.12 + 5.12i)12-s − 1.25i·13-s + (7.78 − 3.22i)14-s − 1.40·16-s + (3.84 + 1.48i)17-s + 1.26·18-s + (−2.56 − 2.56i)19-s + ⋯ |
L(s) = 1 | + (−1.17 − 1.17i)2-s + (0.837 − 0.346i)3-s + 1.76i·4-s + (−1.39 − 0.576i)6-s + (−0.518 + 1.25i)7-s + (0.900 − 0.900i)8-s + (−0.126 + 0.126i)9-s + (0.691 + 0.286i)11-s + (0.612 + 1.47i)12-s − 0.349i·13-s + (2.08 − 0.861i)14-s − 0.352·16-s + (0.932 + 0.360i)17-s + 0.297·18-s + (−0.589 − 0.589i)19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.914+0.403i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(0.914+0.403i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.914+0.403i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(376,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), 0.914+0.403i)
|
Particular Values
L(1) |
≈ |
0.893433−0.188413i |
L(21) |
≈ |
0.893433−0.188413i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−3.84−1.48i)T |
good | 2 | 1+(1.66+1.66i)T+2iT2 |
| 3 | 1+(−1.44+0.600i)T+(2.12−2.12i)T2 |
| 7 | 1+(1.37−3.30i)T+(−4.94−4.94i)T2 |
| 11 | 1+(−2.29−0.950i)T+(7.77+7.77i)T2 |
| 13 | 1+1.25iT−13T2 |
| 19 | 1+(2.56+2.56i)T+19iT2 |
| 23 | 1+(−8.16−3.38i)T+(16.2+16.2i)T2 |
| 29 | 1+(−3.35−8.09i)T+(−20.5+20.5i)T2 |
| 31 | 1+(−2.25+0.935i)T+(21.9−21.9i)T2 |
| 37 | 1+(−4.25+1.76i)T+(26.1−26.1i)T2 |
| 41 | 1+(1.65−3.99i)T+(−28.9−28.9i)T2 |
| 43 | 1+(5.33−5.33i)T−43iT2 |
| 47 | 1+11.3iT−47T2 |
| 53 | 1+(4.02+4.02i)T+53iT2 |
| 59 | 1+(−3.16+3.16i)T−59iT2 |
| 61 | 1+(−0.0929+0.224i)T+(−43.1−43.1i)T2 |
| 67 | 1+7.23T+67T2 |
| 71 | 1+(1.69−0.703i)T+(50.2−50.2i)T2 |
| 73 | 1+(−2.09−5.05i)T+(−51.6+51.6i)T2 |
| 79 | 1+(8.34+3.45i)T+(55.8+55.8i)T2 |
| 83 | 1+(−5.17−5.17i)T+83iT2 |
| 89 | 1+2.19iT−89T2 |
| 97 | 1+(−3.75−9.07i)T+(−68.5+68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.09028217720129063625538255650, −10.03130767833897657852349985210, −9.174416572592750539951638317424, −8.743944133931295307658804620567, −7.964533574597542071046475156162, −6.78724493031497368770361157820, −5.30985595314609937096798349638, −3.31149592752091270799505214140, −2.72655436480540144352652834699, −1.51004209183570363217240745130,
0.866480139129127628502774399354, 3.18761230135222390086610907548, 4.36093875960255563207370292264, 6.05917599549088667774556822948, 6.78595254042098587557565437707, 7.68546200413179985589793985742, 8.501457102004496887606162259710, 9.274965138042943824484448737178, 9.926182599221075967832918669576, 10.67589093254470085444189683948