L(s) = 1 | + (0.982 − 0.982i)2-s + (−0.102 − 0.0424i)3-s + 0.0682i·4-s + (−0.142 + 0.0589i)6-s + (0.656 + 1.58i)7-s + (2.03 + 2.03i)8-s + (−2.11 − 2.11i)9-s + (5.35 − 2.21i)11-s + (0.00289 − 0.00698i)12-s + 1.25i·13-s + (2.20 + 0.912i)14-s + 3.85·16-s + (3.68 + 1.85i)17-s − 4.15·18-s + (1.99 − 1.99i)19-s + ⋯ |
L(s) = 1 | + (0.694 − 0.694i)2-s + (−0.0591 − 0.0244i)3-s + 0.0341i·4-s + (−0.0580 + 0.0240i)6-s + (0.248 + 0.599i)7-s + (0.718 + 0.718i)8-s + (−0.704 − 0.704i)9-s + (1.61 − 0.669i)11-s + (0.000835 − 0.00201i)12-s + 0.347i·13-s + (0.588 + 0.243i)14-s + 0.964·16-s + (0.893 + 0.448i)17-s − 0.978·18-s + (0.458 − 0.458i)19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.913+0.406i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(0.913+0.406i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.913+0.406i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), 0.913+0.406i)
|
Particular Values
L(1) |
≈ |
2.06126−0.438032i |
L(21) |
≈ |
2.06126−0.438032i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−3.68−1.85i)T |
good | 2 | 1+(−0.982+0.982i)T−2iT2 |
| 3 | 1+(0.102+0.0424i)T+(2.12+2.12i)T2 |
| 7 | 1+(−0.656−1.58i)T+(−4.94+4.94i)T2 |
| 11 | 1+(−5.35+2.21i)T+(7.77−7.77i)T2 |
| 13 | 1−1.25iT−13T2 |
| 19 | 1+(−1.99+1.99i)T−19iT2 |
| 23 | 1+(1.89−0.785i)T+(16.2−16.2i)T2 |
| 29 | 1+(1.99−4.80i)T+(−20.5−20.5i)T2 |
| 31 | 1+(2.64+1.09i)T+(21.9+21.9i)T2 |
| 37 | 1+(5.82+2.41i)T+(26.1+26.1i)T2 |
| 41 | 1+(3.61+8.73i)T+(−28.9+28.9i)T2 |
| 43 | 1+(5.25+5.25i)T+43iT2 |
| 47 | 1−7.63iT−47T2 |
| 53 | 1+(5.09−5.09i)T−53iT2 |
| 59 | 1+(1.54+1.54i)T+59iT2 |
| 61 | 1+(−2.19−5.30i)T+(−43.1+43.1i)T2 |
| 67 | 1+2.46T+67T2 |
| 71 | 1+(12.4+5.15i)T+(50.2+50.2i)T2 |
| 73 | 1+(−2.23+5.39i)T+(−51.6−51.6i)T2 |
| 79 | 1+(3.62−1.50i)T+(55.8−55.8i)T2 |
| 83 | 1+(−6.29+6.29i)T−83iT2 |
| 89 | 1+14.3iT−89T2 |
| 97 | 1+(3.25−7.84i)T+(−68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.57408326804240952239653593835, −10.54760876179308192454892279153, −9.090566115220771815689893975230, −8.709103591773664242067351928034, −7.36900055443559678251220418347, −6.13811972544696826548412513883, −5.26931089124875677267594557513, −3.85423199802912131244405605488, −3.22538781940504893322124686988, −1.64813817300117692692136875802,
1.48060230022180798708184310949, 3.54136763117212357938297153639, 4.59293462324323925370854382630, 5.47896994859908116063979625231, 6.45737623853928105462610579380, 7.34145155743133988672458556009, 8.203888587807946623158810719141, 9.610110432044029100312621994051, 10.23065013605488505903924246786, 11.37996282112270668370778229232