L(s) = 1 | + (0.176 + 0.176i)2-s + (0.629 + 1.51i)3-s − 1.93i·4-s + (−0.156 + 0.377i)6-s + (1.32 + 0.547i)7-s + (0.693 − 0.693i)8-s + (0.210 − 0.210i)9-s + (1.03 − 2.48i)11-s + (2.94 − 1.21i)12-s − 0.174i·13-s + (0.136 + 0.329i)14-s − 3.63·16-s + (3.44 + 2.27i)17-s + 0.0742·18-s + (2.69 + 2.69i)19-s + ⋯ |
L(s) = 1 | + (0.124 + 0.124i)2-s + (0.363 + 0.876i)3-s − 0.969i·4-s + (−0.0639 + 0.154i)6-s + (0.499 + 0.206i)7-s + (0.245 − 0.245i)8-s + (0.0703 − 0.0703i)9-s + (0.310 − 0.750i)11-s + (0.849 − 0.351i)12-s − 0.0484i·13-s + (0.0364 + 0.0879i)14-s − 0.908·16-s + (0.834 + 0.550i)17-s + 0.0175·18-s + (0.618 + 0.618i)19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.992−0.125i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(0.992−0.125i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.992−0.125i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), 0.992−0.125i)
|
Particular Values
L(1) |
≈ |
1.81878+0.114672i |
L(21) |
≈ |
1.81878+0.114672i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−3.44−2.27i)T |
good | 2 | 1+(−0.176−0.176i)T+2iT2 |
| 3 | 1+(−0.629−1.51i)T+(−2.12+2.12i)T2 |
| 7 | 1+(−1.32−0.547i)T+(4.94+4.94i)T2 |
| 11 | 1+(−1.03+2.48i)T+(−7.77−7.77i)T2 |
| 13 | 1+0.174iT−13T2 |
| 19 | 1+(−2.69−2.69i)T+19iT2 |
| 23 | 1+(−1.05+2.54i)T+(−16.2−16.2i)T2 |
| 29 | 1+(5.94−2.46i)T+(20.5−20.5i)T2 |
| 31 | 1+(0.188+0.454i)T+(−21.9+21.9i)T2 |
| 37 | 1+(2.19+5.30i)T+(−26.1+26.1i)T2 |
| 41 | 1+(−5.54−2.29i)T+(28.9+28.9i)T2 |
| 43 | 1+(8.00−8.00i)T−43iT2 |
| 47 | 1−2.65iT−47T2 |
| 53 | 1+(−8.73−8.73i)T+53iT2 |
| 59 | 1+(−5.72+5.72i)T−59iT2 |
| 61 | 1+(6.41+2.65i)T+(43.1+43.1i)T2 |
| 67 | 1+12.3T+67T2 |
| 71 | 1+(4.67+11.2i)T+(−50.2+50.2i)T2 |
| 73 | 1+(14.4−5.99i)T+(51.6−51.6i)T2 |
| 79 | 1+(−4.94+11.9i)T+(−55.8−55.8i)T2 |
| 83 | 1+(6.06+6.06i)T+83iT2 |
| 89 | 1−11.4iT−89T2 |
| 97 | 1+(−2.12+0.879i)T+(68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.93657615581148394663115873542, −10.27598680256629495008049361262, −9.445228710601528395572300914253, −8.735106354963821777928523411110, −7.55080499350110094808107154516, −6.21444092878420178142492490636, −5.41479460383212344864650882192, −4.37938545996250424354046141744, −3.29202967985801944558037125588, −1.41865797100854894705232483452,
1.63737588374589903280645595083, 2.86840103022583479557647094527, 4.14630158024493166988754554113, 5.26810366157181470362370925025, 7.04357706677537992517050631747, 7.34213141648999907197423073257, 8.195362966036093791769829298543, 9.169804992868656060339630923095, 10.27807193712079591498015578441, 11.62486775964501421983267319769