L(s) = 1 | + (0.176 − 0.176i)2-s + (0.629 − 1.51i)3-s + 1.93i·4-s + (−0.156 − 0.377i)6-s + (1.32 − 0.547i)7-s + (0.693 + 0.693i)8-s + (0.210 + 0.210i)9-s + (1.03 + 2.48i)11-s + (2.94 + 1.21i)12-s + 0.174i·13-s + (0.136 − 0.329i)14-s − 3.63·16-s + (3.44 − 2.27i)17-s + 0.0742·18-s + (2.69 − 2.69i)19-s + ⋯ |
L(s) = 1 | + (0.124 − 0.124i)2-s + (0.363 − 0.876i)3-s + 0.969i·4-s + (−0.0639 − 0.154i)6-s + (0.499 − 0.206i)7-s + (0.245 + 0.245i)8-s + (0.0703 + 0.0703i)9-s + (0.310 + 0.750i)11-s + (0.849 + 0.351i)12-s + 0.0484i·13-s + (0.0364 − 0.0879i)14-s − 0.908·16-s + (0.834 − 0.550i)17-s + 0.0175·18-s + (0.618 − 0.618i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.125i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 + 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.81878 - 0.114672i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.81878 - 0.114672i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-3.44 + 2.27i)T \) |
good | 2 | \( 1 + (-0.176 + 0.176i)T - 2iT^{2} \) |
| 3 | \( 1 + (-0.629 + 1.51i)T + (-2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (-1.32 + 0.547i)T + (4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-1.03 - 2.48i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 0.174iT - 13T^{2} \) |
| 19 | \( 1 + (-2.69 + 2.69i)T - 19iT^{2} \) |
| 23 | \( 1 + (-1.05 - 2.54i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (5.94 + 2.46i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (0.188 - 0.454i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (2.19 - 5.30i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-5.54 + 2.29i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (8.00 + 8.00i)T + 43iT^{2} \) |
| 47 | \( 1 + 2.65iT - 47T^{2} \) |
| 53 | \( 1 + (-8.73 + 8.73i)T - 53iT^{2} \) |
| 59 | \( 1 + (-5.72 - 5.72i)T + 59iT^{2} \) |
| 61 | \( 1 + (6.41 - 2.65i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 12.3T + 67T^{2} \) |
| 71 | \( 1 + (4.67 - 11.2i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (14.4 + 5.99i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (-4.94 - 11.9i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (6.06 - 6.06i)T - 83iT^{2} \) |
| 89 | \( 1 + 11.4iT - 89T^{2} \) |
| 97 | \( 1 + (-2.12 - 0.879i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.62486775964501421983267319769, −10.27807193712079591498015578441, −9.169804992868656060339630923095, −8.195362966036093791769829298543, −7.34213141648999907197423073257, −7.04357706677537992517050631747, −5.26810366157181470362370925025, −4.14630158024493166988754554113, −2.86840103022583479557647094527, −1.63737588374589903280645595083,
1.41865797100854894705232483452, 3.29202967985801944558037125588, 4.37938545996250424354046141744, 5.41479460383212344864650882192, 6.21444092878420178142492490636, 7.55080499350110094808107154516, 8.735106354963821777928523411110, 9.445228710601528395572300914253, 10.27598680256629495008049361262, 10.93657615581148394663115873542