L(s) = 1 | + (−0.292 + 0.292i)2-s + (−1 − 2.41i)3-s + 1.82i·4-s + (1 + 0.414i)6-s + (−1 − 0.414i)7-s + (−1.12 − 1.12i)8-s + (−2.70 + 2.70i)9-s + (−1 − 0.414i)11-s + (4.41 − 1.82i)12-s − 1.41·13-s + (0.414 − 0.171i)14-s − 3·16-s + (−3 + 2.82i)17-s − 1.58i·18-s + (−3.41 − 3.41i)19-s + ⋯ |
L(s) = 1 | + (−0.207 + 0.207i)2-s + (−0.577 − 1.39i)3-s + 0.914i·4-s + (0.408 + 0.169i)6-s + (−0.377 − 0.156i)7-s + (−0.396 − 0.396i)8-s + (−0.902 + 0.902i)9-s + (−0.301 − 0.124i)11-s + (1.27 − 0.527i)12-s − 0.392·13-s + (0.110 − 0.0458i)14-s − 0.750·16-s + (−0.727 + 0.685i)17-s − 0.373i·18-s + (−0.783 − 0.783i)19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(−0.921−0.387i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(−0.921−0.387i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
−0.921−0.387i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 425, ( :1/2), −0.921−0.387i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(3−2.82i)T |
good | 2 | 1+(0.292−0.292i)T−2iT2 |
| 3 | 1+(1+2.41i)T+(−2.12+2.12i)T2 |
| 7 | 1+(1+0.414i)T+(4.94+4.94i)T2 |
| 11 | 1+(1+0.414i)T+(7.77+7.77i)T2 |
| 13 | 1+1.41T+13T2 |
| 19 | 1+(3.41+3.41i)T+19iT2 |
| 23 | 1+(1.58−3.82i)T+(−16.2−16.2i)T2 |
| 29 | 1+(−1.70−4.12i)T+(−20.5+20.5i)T2 |
| 31 | 1+(3−1.24i)T+(21.9−21.9i)T2 |
| 37 | 1+(−1.46−3.53i)T+(−26.1+26.1i)T2 |
| 41 | 1+(3.12−7.53i)T+(−28.9−28.9i)T2 |
| 43 | 1+(3.41+3.41i)T+43iT2 |
| 47 | 1+10.8T+47T2 |
| 53 | 1+(−1+i)T−53iT2 |
| 59 | 1+(−4.24+4.24i)T−59iT2 |
| 61 | 1+(−3.53+8.53i)T+(−43.1−43.1i)T2 |
| 67 | 1+6.82iT−67T2 |
| 71 | 1+(−12.0+5i)T+(50.2−50.2i)T2 |
| 73 | 1+(−4.94+2.05i)T+(51.6−51.6i)T2 |
| 79 | 1+(−3.82−1.58i)T+(55.8+55.8i)T2 |
| 83 | 1+(−0.242+0.242i)T−83iT2 |
| 89 | 1+9.41iT−89T2 |
| 97 | 1+(−5.94+2.46i)T+(68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.00275154066812877708083506156, −9.650605503500711633510530476798, −8.461712094088775646650720759822, −7.84276778428535037952558298962, −6.74139466625076497267501010283, −6.51525938650821944907948057307, −4.96999559640665771319244717240, −3.42004887698769473364810613663, −2.01830063658283705206385857218, 0,
2.39289955090906246927740323385, 4.05241045658196203350523733790, 4.95124961730577736204645377171, 5.78602528569735038141163518109, 6.72645989616945193200399518182, 8.395170124393985841844533636386, 9.438369382461915981316549295987, 9.927280108828869419373807776074, 10.65062340727806412462916462046