L(s) = 1 | + (0.292 − 0.292i)2-s + (1 + 2.41i)3-s + 1.82i·4-s + (1 + 0.414i)6-s + (1 + 0.414i)7-s + (1.12 + 1.12i)8-s + (−2.70 + 2.70i)9-s + (−1 − 0.414i)11-s + (−4.41 + 1.82i)12-s + 1.41·13-s + (0.414 − 0.171i)14-s − 3·16-s + (3 − 2.82i)17-s + 1.58i·18-s + (−3.41 − 3.41i)19-s + ⋯ |
L(s) = 1 | + (0.207 − 0.207i)2-s + (0.577 + 1.39i)3-s + 0.914i·4-s + (0.408 + 0.169i)6-s + (0.377 + 0.156i)7-s + (0.396 + 0.396i)8-s + (−0.902 + 0.902i)9-s + (−0.301 − 0.124i)11-s + (−1.27 + 0.527i)12-s + 0.392·13-s + (0.110 − 0.0458i)14-s − 0.750·16-s + (0.727 − 0.685i)17-s + 0.373i·18-s + (−0.783 − 0.783i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.243 - 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.243 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.15471 + 1.48017i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15471 + 1.48017i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-3 + 2.82i)T \) |
good | 2 | \( 1 + (-0.292 + 0.292i)T - 2iT^{2} \) |
| 3 | \( 1 + (-1 - 2.41i)T + (-2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-1 - 0.414i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (1 + 0.414i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 1.41T + 13T^{2} \) |
| 19 | \( 1 + (3.41 + 3.41i)T + 19iT^{2} \) |
| 23 | \( 1 + (-1.58 + 3.82i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-1.70 - 4.12i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (3 - 1.24i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (1.46 + 3.53i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (3.12 - 7.53i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-3.41 - 3.41i)T + 43iT^{2} \) |
| 47 | \( 1 - 10.8T + 47T^{2} \) |
| 53 | \( 1 + (1 - i)T - 53iT^{2} \) |
| 59 | \( 1 + (-4.24 + 4.24i)T - 59iT^{2} \) |
| 61 | \( 1 + (-3.53 + 8.53i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 6.82iT - 67T^{2} \) |
| 71 | \( 1 + (-12.0 + 5i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (4.94 - 2.05i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-3.82 - 1.58i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (0.242 - 0.242i)T - 83iT^{2} \) |
| 89 | \( 1 + 9.41iT - 89T^{2} \) |
| 97 | \( 1 + (5.94 - 2.46i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.17834442829990635821476442828, −10.69279241486004725532513321552, −9.546067370968706705099870425912, −8.732314298738925788404848615859, −8.134206742415446450192966580123, −6.91273253948972901670792519503, −5.21450512299763379390149636949, −4.45951147905015743018339951142, −3.46139040227468367595713524718, −2.57639039715506029730153934450,
1.20121589693157902927855301237, 2.19900918266107781696633965872, 3.92187076162873379641938516713, 5.44298970401391964287553690734, 6.24854746752052352403603705543, 7.21833540647213711024846349012, 7.975986757986551377851968997761, 8.874200394756401818404148840388, 10.09277762495400667169469511826, 10.88011837613840512510787890070