Properties

Label 2-425-85.19-c1-0-9
Degree 22
Conductor 425425
Sign 0.2430.969i-0.243 - 0.969i
Analytic cond. 3.393643.39364
Root an. cond. 1.842181.84218
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.292 − 0.292i)2-s + (1 + 2.41i)3-s + 1.82i·4-s + (1 + 0.414i)6-s + (1 + 0.414i)7-s + (1.12 + 1.12i)8-s + (−2.70 + 2.70i)9-s + (−1 − 0.414i)11-s + (−4.41 + 1.82i)12-s + 1.41·13-s + (0.414 − 0.171i)14-s − 3·16-s + (3 − 2.82i)17-s + 1.58i·18-s + (−3.41 − 3.41i)19-s + ⋯
L(s)  = 1  + (0.207 − 0.207i)2-s + (0.577 + 1.39i)3-s + 0.914i·4-s + (0.408 + 0.169i)6-s + (0.377 + 0.156i)7-s + (0.396 + 0.396i)8-s + (−0.902 + 0.902i)9-s + (−0.301 − 0.124i)11-s + (−1.27 + 0.527i)12-s + 0.392·13-s + (0.110 − 0.0458i)14-s − 0.750·16-s + (0.727 − 0.685i)17-s + 0.373i·18-s + (−0.783 − 0.783i)19-s + ⋯

Functional equation

Λ(s)=(425s/2ΓC(s)L(s)=((0.2430.969i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.243 - 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(425s/2ΓC(s+1/2)L(s)=((0.2430.969i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.243 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 425425    =    52175^{2} \cdot 17
Sign: 0.2430.969i-0.243 - 0.969i
Analytic conductor: 3.393643.39364
Root analytic conductor: 1.842181.84218
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ425(274,)\chi_{425} (274, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 425, ( :1/2), 0.2430.969i)(2,\ 425,\ (\ :1/2),\ -0.243 - 0.969i)

Particular Values

L(1)L(1) \approx 1.15471+1.48017i1.15471 + 1.48017i
L(12)L(\frac12) \approx 1.15471+1.48017i1.15471 + 1.48017i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
17 1+(3+2.82i)T 1 + (-3 + 2.82i)T
good2 1+(0.292+0.292i)T2iT2 1 + (-0.292 + 0.292i)T - 2iT^{2}
3 1+(12.41i)T+(2.12+2.12i)T2 1 + (-1 - 2.41i)T + (-2.12 + 2.12i)T^{2}
7 1+(10.414i)T+(4.94+4.94i)T2 1 + (-1 - 0.414i)T + (4.94 + 4.94i)T^{2}
11 1+(1+0.414i)T+(7.77+7.77i)T2 1 + (1 + 0.414i)T + (7.77 + 7.77i)T^{2}
13 11.41T+13T2 1 - 1.41T + 13T^{2}
19 1+(3.41+3.41i)T+19iT2 1 + (3.41 + 3.41i)T + 19iT^{2}
23 1+(1.58+3.82i)T+(16.216.2i)T2 1 + (-1.58 + 3.82i)T + (-16.2 - 16.2i)T^{2}
29 1+(1.704.12i)T+(20.5+20.5i)T2 1 + (-1.70 - 4.12i)T + (-20.5 + 20.5i)T^{2}
31 1+(31.24i)T+(21.921.9i)T2 1 + (3 - 1.24i)T + (21.9 - 21.9i)T^{2}
37 1+(1.46+3.53i)T+(26.1+26.1i)T2 1 + (1.46 + 3.53i)T + (-26.1 + 26.1i)T^{2}
41 1+(3.127.53i)T+(28.928.9i)T2 1 + (3.12 - 7.53i)T + (-28.9 - 28.9i)T^{2}
43 1+(3.413.41i)T+43iT2 1 + (-3.41 - 3.41i)T + 43iT^{2}
47 110.8T+47T2 1 - 10.8T + 47T^{2}
53 1+(1i)T53iT2 1 + (1 - i)T - 53iT^{2}
59 1+(4.24+4.24i)T59iT2 1 + (-4.24 + 4.24i)T - 59iT^{2}
61 1+(3.53+8.53i)T+(43.143.1i)T2 1 + (-3.53 + 8.53i)T + (-43.1 - 43.1i)T^{2}
67 16.82iT67T2 1 - 6.82iT - 67T^{2}
71 1+(12.0+5i)T+(50.250.2i)T2 1 + (-12.0 + 5i)T + (50.2 - 50.2i)T^{2}
73 1+(4.942.05i)T+(51.651.6i)T2 1 + (4.94 - 2.05i)T + (51.6 - 51.6i)T^{2}
79 1+(3.821.58i)T+(55.8+55.8i)T2 1 + (-3.82 - 1.58i)T + (55.8 + 55.8i)T^{2}
83 1+(0.2420.242i)T83iT2 1 + (0.242 - 0.242i)T - 83iT^{2}
89 1+9.41iT89T2 1 + 9.41iT - 89T^{2}
97 1+(5.942.46i)T+(68.568.5i)T2 1 + (5.94 - 2.46i)T + (68.5 - 68.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.17834442829990635821476442828, −10.69279241486004725532513321552, −9.546067370968706705099870425912, −8.732314298738925788404848615859, −8.134206742415446450192966580123, −6.91273253948972901670792519503, −5.21450512299763379390149636949, −4.45951147905015743018339951142, −3.46139040227468367595713524718, −2.57639039715506029730153934450, 1.20121589693157902927855301237, 2.19900918266107781696633965872, 3.92187076162873379641938516713, 5.44298970401391964287553690734, 6.24854746752052352403603705543, 7.21833540647213711024846349012, 7.975986757986551377851968997761, 8.874200394756401818404148840388, 10.09277762495400667169469511826, 10.88011837613840512510787890070

Graph of the ZZ-function along the critical line