Properties

Label 2-425-85.19-c1-0-0
Degree 22
Conductor 425425
Sign 0.5520.833i-0.552 - 0.833i
Analytic cond. 3.393643.39364
Root an. cond. 1.842181.84218
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.52 + 1.52i)2-s + (−1.06 − 2.56i)3-s − 2.67i·4-s + (5.54 + 2.29i)6-s + (−2.90 − 1.20i)7-s + (1.03 + 1.03i)8-s + (−3.32 + 3.32i)9-s + (−4.70 − 1.94i)11-s + (−6.86 + 2.84i)12-s + 1.39·13-s + (6.27 − 2.60i)14-s + 2.18·16-s + (3.66 + 1.88i)17-s − 10.1i·18-s + (3.63 + 3.63i)19-s + ⋯
L(s)  = 1  + (−1.08 + 1.08i)2-s + (−0.613 − 1.48i)3-s − 1.33i·4-s + (2.26 + 0.937i)6-s + (−1.09 − 0.454i)7-s + (0.366 + 0.366i)8-s + (−1.10 + 1.10i)9-s + (−1.41 − 0.587i)11-s + (−1.98 + 0.820i)12-s + 0.386·13-s + (1.67 − 0.695i)14-s + 0.545·16-s + (0.889 + 0.457i)17-s − 2.39i·18-s + (0.833 + 0.833i)19-s + ⋯

Functional equation

Λ(s)=(425s/2ΓC(s)L(s)=((0.5520.833i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.552 - 0.833i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(425s/2ΓC(s+1/2)L(s)=((0.5520.833i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.552 - 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 425425    =    52175^{2} \cdot 17
Sign: 0.5520.833i-0.552 - 0.833i
Analytic conductor: 3.393643.39364
Root analytic conductor: 1.842181.84218
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ425(274,)\chi_{425} (274, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 425, ( :1/2), 0.5520.833i)(2,\ 425,\ (\ :1/2),\ -0.552 - 0.833i)

Particular Values

L(1)L(1) \approx 0.0682320+0.127098i0.0682320 + 0.127098i
L(12)L(\frac12) \approx 0.0682320+0.127098i0.0682320 + 0.127098i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
17 1+(3.661.88i)T 1 + (-3.66 - 1.88i)T
good2 1+(1.521.52i)T2iT2 1 + (1.52 - 1.52i)T - 2iT^{2}
3 1+(1.06+2.56i)T+(2.12+2.12i)T2 1 + (1.06 + 2.56i)T + (-2.12 + 2.12i)T^{2}
7 1+(2.90+1.20i)T+(4.94+4.94i)T2 1 + (2.90 + 1.20i)T + (4.94 + 4.94i)T^{2}
11 1+(4.70+1.94i)T+(7.77+7.77i)T2 1 + (4.70 + 1.94i)T + (7.77 + 7.77i)T^{2}
13 11.39T+13T2 1 - 1.39T + 13T^{2}
19 1+(3.633.63i)T+19iT2 1 + (-3.63 - 3.63i)T + 19iT^{2}
23 1+(2.375.73i)T+(16.216.2i)T2 1 + (2.37 - 5.73i)T + (-16.2 - 16.2i)T^{2}
29 1+(2.65+6.41i)T+(20.5+20.5i)T2 1 + (2.65 + 6.41i)T + (-20.5 + 20.5i)T^{2}
31 1+(2.33+0.966i)T+(21.921.9i)T2 1 + (-2.33 + 0.966i)T + (21.9 - 21.9i)T^{2}
37 1+(2.977.17i)T+(26.1+26.1i)T2 1 + (-2.97 - 7.17i)T + (-26.1 + 26.1i)T^{2}
41 1+(3.839.25i)T+(28.928.9i)T2 1 + (3.83 - 9.25i)T + (-28.9 - 28.9i)T^{2}
43 1+(2.08+2.08i)T+43iT2 1 + (2.08 + 2.08i)T + 43iT^{2}
47 15.08T+47T2 1 - 5.08T + 47T^{2}
53 1+(2.932.93i)T53iT2 1 + (2.93 - 2.93i)T - 53iT^{2}
59 1+(0.594+0.594i)T59iT2 1 + (-0.594 + 0.594i)T - 59iT^{2}
61 1+(2.295.54i)T+(43.143.1i)T2 1 + (2.29 - 5.54i)T + (-43.1 - 43.1i)T^{2}
67 1+4.10iT67T2 1 + 4.10iT - 67T^{2}
71 1+(9.664.00i)T+(50.250.2i)T2 1 + (9.66 - 4.00i)T + (50.2 - 50.2i)T^{2}
73 1+(0.549+0.227i)T+(51.651.6i)T2 1 + (-0.549 + 0.227i)T + (51.6 - 51.6i)T^{2}
79 1+(6.77+2.80i)T+(55.8+55.8i)T2 1 + (6.77 + 2.80i)T + (55.8 + 55.8i)T^{2}
83 1+(3.353.35i)T83iT2 1 + (3.35 - 3.35i)T - 83iT^{2}
89 114.1iT89T2 1 - 14.1iT - 89T^{2}
97 1+(2.37+0.982i)T+(68.568.5i)T2 1 + (-2.37 + 0.982i)T + (68.5 - 68.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.50472324563020133454219322416, −10.23541767295141294448232626542, −9.701609641826944590776551376437, −8.110617165643095080608253341945, −7.85986409663544261330567908948, −7.00855601327474220909013407317, −5.97275331860395561108047625405, −5.73462917992855241908139912850, −3.22360269701160123005405295751, −1.18068411114736070104800835568, 0.15931479322803558033775783271, 2.64705570336891495145182619598, 3.49312697123903755317043223819, 4.97702338311747777738277336377, 5.82292520879262857182781697754, 7.42407121760542920297032496942, 8.767577065406845666615150019741, 9.398863745805661398044020829058, 10.17217820024102521428100719683, 10.48497940357391262011604209525

Graph of the ZZ-function along the critical line