L(s) = 1 | + (0.187 + 0.187i)2-s + (1.67 + 0.692i)3-s − 1.92i·4-s + (0.183 + 0.443i)6-s + (1.88 + 4.55i)7-s + (0.737 − 0.737i)8-s + (0.193 + 0.193i)9-s + (1.50 + 3.62i)11-s + (1.33 − 3.22i)12-s − 2.07·13-s + (−0.500 + 1.20i)14-s − 3.58·16-s + (3.19 − 2.60i)17-s + 0.0724i·18-s + (2.08 − 2.08i)19-s + ⋯ |
L(s) = 1 | + (0.132 + 0.132i)2-s + (0.965 + 0.399i)3-s − 0.964i·4-s + (0.0749 + 0.181i)6-s + (0.712 + 1.72i)7-s + (0.260 − 0.260i)8-s + (0.0643 + 0.0643i)9-s + (0.452 + 1.09i)11-s + (0.385 − 0.931i)12-s − 0.574·13-s + (−0.133 + 0.322i)14-s − 0.895·16-s + (0.774 − 0.632i)17-s + 0.0170i·18-s + (0.478 − 0.478i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.905 - 0.424i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.905 - 0.424i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.06063 + 0.459262i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.06063 + 0.459262i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-3.19 + 2.60i)T \) |
good | 2 | \( 1 + (-0.187 - 0.187i)T + 2iT^{2} \) |
| 3 | \( 1 + (-1.67 - 0.692i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-1.88 - 4.55i)T + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-1.50 - 3.62i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + 2.07T + 13T^{2} \) |
| 19 | \( 1 + (-2.08 + 2.08i)T - 19iT^{2} \) |
| 23 | \( 1 + (-3.58 + 1.48i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (3.22 + 1.33i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-2.23 + 5.40i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-1.88 - 0.781i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (10.9 - 4.53i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (3.91 - 3.91i)T - 43iT^{2} \) |
| 47 | \( 1 - 0.453T + 47T^{2} \) |
| 53 | \( 1 + (4.60 + 4.60i)T + 53iT^{2} \) |
| 59 | \( 1 + (4.92 + 4.92i)T + 59iT^{2} \) |
| 61 | \( 1 + (0.0429 - 0.0177i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 10.0iT - 67T^{2} \) |
| 71 | \( 1 + (-5.85 + 14.1i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (3.36 - 8.12i)T + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-0.991 - 2.39i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (-1.09 - 1.09i)T + 83iT^{2} \) |
| 89 | \( 1 + 10.2iT - 89T^{2} \) |
| 97 | \( 1 + (-4.07 + 9.83i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.43994162221925196446847665223, −9.836690255785868884321173755802, −9.532184480758723548532244556726, −8.737869730365920918948175381110, −7.69667715795434720304308103422, −6.43526397990775080776048439553, −5.28721668235906179083098737706, −4.65297434152227968381561248336, −2.90199890300939264194537822132, −1.89914338663940957540077541034,
1.51149568025201142211707020345, 3.22043460509630503315525633359, 3.76076808004203484857378622314, 5.09364683911584494416424922718, 6.88166058986387754114295195860, 7.64062707622858507009144247302, 8.153664336305076514741308141030, 9.005291885841410862586449785574, 10.36362286428967090563915268301, 11.14030006319458540483479804287