Properties

Label 2-425-85.59-c1-0-11
Degree 22
Conductor 425425
Sign 0.966+0.256i0.966 + 0.256i
Analytic cond. 3.393643.39364
Root an. cond. 1.842181.84218
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.917 + 0.917i)2-s + (−1.69 − 0.703i)3-s − 0.318i·4-s + (−0.912 − 2.20i)6-s + (1.34 + 3.23i)7-s + (2.12 − 2.12i)8-s + (0.267 + 0.267i)9-s + (−1.46 − 3.53i)11-s + (−0.223 + 0.540i)12-s + 3.99·13-s + (−1.74 + 4.20i)14-s + 3.26·16-s + (2.51 − 3.26i)17-s + 0.490i·18-s + (3.98 − 3.98i)19-s + ⋯
L(s)  = 1  + (0.648 + 0.648i)2-s + (−0.980 − 0.406i)3-s − 0.159i·4-s + (−0.372 − 0.899i)6-s + (0.507 + 1.22i)7-s + (0.751 − 0.751i)8-s + (0.0890 + 0.0890i)9-s + (−0.441 − 1.06i)11-s + (−0.0645 + 0.155i)12-s + 1.10·13-s + (−0.465 + 1.12i)14-s + 0.815·16-s + (0.611 − 0.791i)17-s + 0.115i·18-s + (0.914 − 0.914i)19-s + ⋯

Functional equation

Λ(s)=(425s/2ΓC(s)L(s)=((0.966+0.256i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.966 + 0.256i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(425s/2ΓC(s+1/2)L(s)=((0.966+0.256i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.966 + 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 425425    =    52175^{2} \cdot 17
Sign: 0.966+0.256i0.966 + 0.256i
Analytic conductor: 3.393643.39364
Root analytic conductor: 1.842181.84218
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ425(399,)\chi_{425} (399, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 425, ( :1/2), 0.966+0.256i)(2,\ 425,\ (\ :1/2),\ 0.966 + 0.256i)

Particular Values

L(1)L(1) \approx 1.518490.198371i1.51849 - 0.198371i
L(12)L(\frac12) \approx 1.518490.198371i1.51849 - 0.198371i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
17 1+(2.51+3.26i)T 1 + (-2.51 + 3.26i)T
good2 1+(0.9170.917i)T+2iT2 1 + (-0.917 - 0.917i)T + 2iT^{2}
3 1+(1.69+0.703i)T+(2.12+2.12i)T2 1 + (1.69 + 0.703i)T + (2.12 + 2.12i)T^{2}
7 1+(1.343.23i)T+(4.94+4.94i)T2 1 + (-1.34 - 3.23i)T + (-4.94 + 4.94i)T^{2}
11 1+(1.46+3.53i)T+(7.77+7.77i)T2 1 + (1.46 + 3.53i)T + (-7.77 + 7.77i)T^{2}
13 13.99T+13T2 1 - 3.99T + 13T^{2}
19 1+(3.98+3.98i)T19iT2 1 + (-3.98 + 3.98i)T - 19iT^{2}
23 1+(2.310.960i)T+(16.216.2i)T2 1 + (2.31 - 0.960i)T + (16.2 - 16.2i)T^{2}
29 1+(5.142.12i)T+(20.5+20.5i)T2 1 + (-5.14 - 2.12i)T + (20.5 + 20.5i)T^{2}
31 1+(0.843+2.03i)T+(21.921.9i)T2 1 + (-0.843 + 2.03i)T + (-21.9 - 21.9i)T^{2}
37 1+(1.78+0.738i)T+(26.1+26.1i)T2 1 + (1.78 + 0.738i)T + (26.1 + 26.1i)T^{2}
41 1+(0.730+0.302i)T+(28.928.9i)T2 1 + (-0.730 + 0.302i)T + (28.9 - 28.9i)T^{2}
43 1+(0.7040.704i)T43iT2 1 + (0.704 - 0.704i)T - 43iT^{2}
47 1+9.47T+47T2 1 + 9.47T + 47T^{2}
53 1+(3.873.87i)T+53iT2 1 + (-3.87 - 3.87i)T + 53iT^{2}
59 1+(2.12+2.12i)T+59iT2 1 + (2.12 + 2.12i)T + 59iT^{2}
61 1+(12.95.37i)T+(43.143.1i)T2 1 + (12.9 - 5.37i)T + (43.1 - 43.1i)T^{2}
67 115.9iT67T2 1 - 15.9iT - 67T^{2}
71 1+(2.095.05i)T+(50.250.2i)T2 1 + (2.09 - 5.05i)T + (-50.2 - 50.2i)T^{2}
73 1+(2.51+6.06i)T+(51.651.6i)T2 1 + (-2.51 + 6.06i)T + (-51.6 - 51.6i)T^{2}
79 1+(4.5410.9i)T+(55.8+55.8i)T2 1 + (-4.54 - 10.9i)T + (-55.8 + 55.8i)T^{2}
83 1+(10.8+10.8i)T+83iT2 1 + (10.8 + 10.8i)T + 83iT^{2}
89 1+4.92iT89T2 1 + 4.92iT - 89T^{2}
97 1+(5.4513.1i)T+(68.568.5i)T2 1 + (5.45 - 13.1i)T + (-68.5 - 68.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.44108254750162680389589301203, −10.51011601853258556472708642573, −9.210970143951580637856538420917, −8.258601369760602607877352529715, −7.06734631593927198039367865954, −6.01669727344474931532233097160, −5.64157435812079741264051642404, −4.86584022223957655553647999204, −3.11346120166255624884036300835, −1.06799412543329883342493773436, 1.57497881900485251946114063693, 3.43646001515816764822894419101, 4.37161194771167583268174266613, 5.08480855459943121032757760288, 6.25316027219527117612485628550, 7.62817438683023094113087115598, 8.212896208170197532738940381994, 10.09405987479042656674953283167, 10.47951175107490237945124433878, 11.24981115012732815385785236781

Graph of the ZZ-function along the critical line