L(s) = 1 | − 2-s + 6·3-s − 17·4-s − 6·6-s − 4·7-s + 25·8-s − 69·9-s − 20·11-s − 102·12-s − 42·13-s + 4·14-s + 78·16-s − 102·17-s + 69·18-s − 70·19-s − 24·21-s + 20·22-s + 92·23-s + 150·24-s + 42·26-s − 414·27-s + 68·28-s − 316·29-s − 758·31-s − 174·32-s − 120·33-s + 102·34-s + ⋯ |
L(s) = 1 | − 0.353·2-s + 1.15·3-s − 2.12·4-s − 0.408·6-s − 0.215·7-s + 1.10·8-s − 2.55·9-s − 0.548·11-s − 2.45·12-s − 0.896·13-s + 0.0763·14-s + 1.21·16-s − 1.45·17-s + 0.903·18-s − 0.845·19-s − 0.249·21-s + 0.193·22-s + 0.834·23-s + 1.27·24-s + 0.316·26-s − 2.95·27-s + 0.458·28-s − 2.02·29-s − 4.39·31-s − 0.961·32-s − 0.633·33-s + 0.514·34-s + ⋯ |
Λ(s)=(=((512⋅176)s/2ΓC(s)6L(s)Λ(4−s)
Λ(s)=(=((512⋅176)s/2ΓC(s+3/2)6L(s)Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | (1+pT)6 |
good | 2 | 1+T+9pT2+5pT3+213T4+29T5+463p2T6+29p3T7+213p6T8+5p10T9+9p13T10+p15T11+p18T12 |
| 3 | 1−2pT+35pT2−70p2T3+1904pT4−10144pT5+189869T6−10144p4T7+1904p7T8−70p11T9+35p13T10−2p16T11+p18T12 |
| 7 | 1+4T+1079T2+1168T3+94062pT4+98386T5+266269953T6+98386p3T7+94062p7T8+1168p9T9+1079p12T10+4p15T11+p18T12 |
| 11 | 1+20T+4948T2+43012T3+10814227T4+11855292T5+15873719200T6+11855292p3T7+10814227p6T8+43012p9T9+4948p12T10+20p15T11+p18T12 |
| 13 | 1+42T+7869T2+151042T3+24727174T4+111870518T5+54714903749T6+111870518p3T7+24727174p6T8+151042p9T9+7869p12T10+42p15T11+p18T12 |
| 19 | 1+70T+26826T2+2464698T3+330431959T4+34215767068T5+2653157592748T6+34215767068p3T7+330431959p6T8+2464698p9T9+26826p12T10+70p15T11+p18T12 |
| 23 | 1−4pT+42788T2−5436848T3+830575523T4−129470295824T5+11130729824624T6−129470295824p3T7+830575523p6T8−5436848p9T9+42788p12T10−4p16T11+p18T12 |
| 29 | 1+316T+109526T2+23100548T3+4747718199T4+823410852832T5+133168996602228T6+823410852832p3T7+4747718199p6T8+23100548p9T9+109526p12T10+316p15T11+p18T12 |
| 31 | 1+758T+360977T2+123118754T3+33543209988T4+7472355028736T5+1406393966922489T6+7472355028736p3T7+33543209988p6T8+123118754p9T9+360977p12T10+758p15T11+p18T12 |
| 37 | 1+76T+169906T2+10502668T3+15896846071T4+745784974728T5+956093792902748T6+745784974728p3T7+15896846071p6T8+10502668p9T9+169906p12T10+76p15T11+p18T12 |
| 41 | 1+512T+364466T2+138040792T3+58919063775T4+17026052439928T5+5298258739038460T6+17026052439928p3T7+58919063775p6T8+138040792p9T9+364466p12T10+512p15T11+p18T12 |
| 43 | 1+70T+197874T2−29168326T3+10826853927T4−7592990627284T5+302366159104508T6−7592990627284p3T7+10826853927p6T8−29168326p9T9+197874p12T10+70p15T11+p18T12 |
| 47 | 1−448T+580798T2−198993872T3+141567396175T4−37888800109264T5+19115530685467620T6−37888800109264p3T7+141567396175p6T8−198993872p9T9+580798p12T10−448p15T11+p18T12 |
| 53 | 1+734T+847989T2+431012234T3+287021168218T4+110583765819462T5+54487722665556021T6+110583765819462p3T7+287021168218p6T8+431012234p9T9+847989p12T10+734p15T11+p18T12 |
| 59 | 1+238T+995334T2+197942850T3+452027119815T4+73669147883468T5+118899853181909524T6+73669147883468p3T7+452027119815p6T8+197942850p9T9+995334p12T10+238p15T11+p18T12 |
| 61 | 1+1188T+1748090T2+1367574628T3+1116299329335T4+624612049275464T5+350026644826364172T6+624612049275464p3T7+1116299329335p6T8+1367574628p9T9+1748090p12T10+1188p15T11+p18T12 |
| 67 | 1−768T+706690T2−192601280T3+237734438775T4−127111011778624T5+127125428249077628T6−127111011778624p3T7+237734438775p6T8−192601280p9T9+706690p12T10−768p15T11+p18T12 |
| 71 | 1+1276T+1911811T2+1562133684T3+1375832897030T4+868606251808150T5+592866246651136721T6+868606251808150p3T7+1375832897030p6T8+1562133684p9T9+1911811p12T10+1276p15T11+p18T12 |
| 73 | 1+84T+1019274T2+8385356T3+625009606863T4+32327144607888T5+300051831193873292T6+32327144607888p3T7+625009606863p6T8+8385356p9T9+1019274p12T10+84p15T11+p18T12 |
| 79 | 1+3066T+5975027T2+8147234562T3+8883522900366T4+7915792843234616T5+6033024976452237145T6+7915792843234616p3T7+8883522900366p6T8+8147234562p9T9+5975027p12T10+3066p15T11+p18T12 |
| 83 | 1+92T+1323682T2+273166884T3+1286946563863T4+191484652785656T5+860607993399136316T6+191484652785656p3T7+1286946563863p6T8+273166884p9T9+1323682p12T10+92p15T11+p18T12 |
| 89 | 1+1760T+2798174T2+4169476384T3+4526987039919T4+4570352781182384T5+4300812649730173092T6+4570352781182384p3T7+4526987039919p6T8+4169476384p9T9+2798174p12T10+1760p15T11+p18T12 |
| 97 | 1−12pT+2791838T2−3926683212T3+5091862013775T4−5432759795084648T5+6177688080875556580T6−5432759795084648p3T7+5091862013775p6T8−3926683212p9T9+2791838p12T10−12p16T11+p18T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.22613386591412461296648561359, −5.88109819171209603335669000030, −5.57335889864923687374869103025, −5.38713727173116145507439401055, −5.30207028857165183710073217305, −5.25944823858072719605304131250, −5.24294161077458733030047651285, −4.89896620513056292980913755419, −4.56601367235211404810101891550, −4.40873618677941242235883295377, −4.33591653580664017420712198753, −4.04939618099608166281072170109, −4.03643332916246655663454454925, −3.55078489590976208503364549774, −3.46339446809314426930640943390, −3.20570749486415411899448185612, −3.10865382454852942656713926570, −2.88708930413310177293794103579, −2.68398862508619512758105295027, −2.34913138908517530977372910233, −2.31717791152293715593995312592, −1.93149043706285290329073491493, −1.48907858398747149608729112713, −1.48593948131549558195888611335, −1.28840677838444840479038845230, 0, 0, 0, 0, 0, 0,
1.28840677838444840479038845230, 1.48593948131549558195888611335, 1.48907858398747149608729112713, 1.93149043706285290329073491493, 2.31717791152293715593995312592, 2.34913138908517530977372910233, 2.68398862508619512758105295027, 2.88708930413310177293794103579, 3.10865382454852942656713926570, 3.20570749486415411899448185612, 3.46339446809314426930640943390, 3.55078489590976208503364549774, 4.03643332916246655663454454925, 4.04939618099608166281072170109, 4.33591653580664017420712198753, 4.40873618677941242235883295377, 4.56601367235211404810101891550, 4.89896620513056292980913755419, 5.24294161077458733030047651285, 5.25944823858072719605304131250, 5.30207028857165183710073217305, 5.38713727173116145507439401055, 5.57335889864923687374869103025, 5.88109819171209603335669000030, 6.22613386591412461296648561359
Plot not available for L-functions of degree greater than 10.