Properties

Label 2-425-1.1-c3-0-62
Degree $2$
Conductor $425$
Sign $-1$
Analytic cond. $25.0758$
Root an. cond. $5.00757$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.52·2-s + 9.11·3-s − 5.68·4-s − 13.8·6-s − 16.3·7-s + 20.8·8-s + 56.1·9-s − 25.6·11-s − 51.8·12-s − 52.2·13-s + 24.8·14-s + 13.8·16-s − 17·17-s − 85.3·18-s + 47.4·19-s − 149.·21-s + 38.9·22-s − 43.0·23-s + 189.·24-s + 79.4·26-s + 265.·27-s + 93.0·28-s − 135.·29-s − 302.·31-s − 187.·32-s − 233.·33-s + 25.8·34-s + ⋯
L(s)  = 1  − 0.537·2-s + 1.75·3-s − 0.711·4-s − 0.943·6-s − 0.883·7-s + 0.919·8-s + 2.07·9-s − 0.702·11-s − 1.24·12-s − 1.11·13-s + 0.474·14-s + 0.216·16-s − 0.242·17-s − 1.11·18-s + 0.573·19-s − 1.55·21-s + 0.377·22-s − 0.390·23-s + 1.61·24-s + 0.599·26-s + 1.89·27-s + 0.628·28-s − 0.864·29-s − 1.75·31-s − 1.03·32-s − 1.23·33-s + 0.130·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(425\)    =    \(5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(25.0758\)
Root analytic conductor: \(5.00757\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 425,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 + 17T \)
good2 \( 1 + 1.52T + 8T^{2} \)
3 \( 1 - 9.11T + 27T^{2} \)
7 \( 1 + 16.3T + 343T^{2} \)
11 \( 1 + 25.6T + 1.33e3T^{2} \)
13 \( 1 + 52.2T + 2.19e3T^{2} \)
19 \( 1 - 47.4T + 6.85e3T^{2} \)
23 \( 1 + 43.0T + 1.21e4T^{2} \)
29 \( 1 + 135.T + 2.43e4T^{2} \)
31 \( 1 + 302.T + 2.97e4T^{2} \)
37 \( 1 + 280.T + 5.06e4T^{2} \)
41 \( 1 + 159.T + 6.89e4T^{2} \)
43 \( 1 - 562.T + 7.95e4T^{2} \)
47 \( 1 - 24.8T + 1.03e5T^{2} \)
53 \( 1 + 430.T + 1.48e5T^{2} \)
59 \( 1 + 185.T + 2.05e5T^{2} \)
61 \( 1 + 105.T + 2.26e5T^{2} \)
67 \( 1 - 334.T + 3.00e5T^{2} \)
71 \( 1 - 751.T + 3.57e5T^{2} \)
73 \( 1 - 845.T + 3.89e5T^{2} \)
79 \( 1 + 1.21e3T + 4.93e5T^{2} \)
83 \( 1 + 1.10e3T + 5.71e5T^{2} \)
89 \( 1 + 106.T + 7.04e5T^{2} \)
97 \( 1 + 35.8T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.703895399997746960200091565743, −9.493077125755260633712220078608, −8.616897210124770141184253135152, −7.69567930141038720470215588789, −7.16334659302847444532257739973, −5.30207028857165183710073217305, −4.03643332916246655663454454925, −3.10865382454852942656713926570, −1.93149043706285290329073491493, 0, 1.93149043706285290329073491493, 3.10865382454852942656713926570, 4.03643332916246655663454454925, 5.30207028857165183710073217305, 7.16334659302847444532257739973, 7.69567930141038720470215588789, 8.616897210124770141184253135152, 9.493077125755260633712220078608, 9.703895399997746960200091565743

Graph of the $Z$-function along the critical line