L(s) = 1 | − 1.36i·2-s + 3.15i·3-s + 6.14·4-s + 4.29·6-s + 7.94i·7-s − 19.2i·8-s + 17.0·9-s + 27.6·11-s + 19.3i·12-s + 58.1i·13-s + 10.8·14-s + 22.9·16-s + 17i·17-s − 23.2i·18-s − 89.1·19-s + ⋯ |
L(s) = 1 | − 0.481i·2-s + 0.607i·3-s + 0.768·4-s + 0.292·6-s + 0.428i·7-s − 0.851i·8-s + 0.631·9-s + 0.756·11-s + 0.466i·12-s + 1.23i·13-s + 0.206·14-s + 0.358·16-s + 0.242i·17-s − 0.303i·18-s − 1.07·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.894−0.447i)Λ(4−s)
Λ(s)=(=(425s/2ΓC(s+3/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
25.0758 |
Root analytic conductor: |
5.00757 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(324,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :3/2), 0.894−0.447i)
|
Particular Values
L(2) |
≈ |
2.636418536 |
L(21) |
≈ |
2.636418536 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1−17iT |
good | 2 | 1+1.36iT−8T2 |
| 3 | 1−3.15iT−27T2 |
| 7 | 1−7.94iT−343T2 |
| 11 | 1−27.6T+1.33e3T2 |
| 13 | 1−58.1iT−2.19e3T2 |
| 19 | 1+89.1T+6.85e3T2 |
| 23 | 1+115.iT−1.21e4T2 |
| 29 | 1−128.T+2.43e4T2 |
| 31 | 1−273.T+2.97e4T2 |
| 37 | 1−132.iT−5.06e4T2 |
| 41 | 1+470.T+6.89e4T2 |
| 43 | 1−352.iT−7.95e4T2 |
| 47 | 1+152.iT−1.03e5T2 |
| 53 | 1−527.iT−1.48e5T2 |
| 59 | 1−292.T+2.05e5T2 |
| 61 | 1+53.8T+2.26e5T2 |
| 67 | 1+52.9iT−3.00e5T2 |
| 71 | 1−788.T+3.57e5T2 |
| 73 | 1−295.iT−3.89e5T2 |
| 79 | 1−720.T+4.93e5T2 |
| 83 | 1+116.iT−5.71e5T2 |
| 89 | 1−813.T+7.04e5T2 |
| 97 | 1+794.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72308870657567844805290598227, −10.11629982777248473491691629807, −9.223626366010958020661931753624, −8.261910977690459780226048112589, −6.71165125949716709475273442944, −6.44961528817316771571179940816, −4.67928101884117464611030283685, −3.90021532882361645014123673841, −2.52850687783154344017929280299, −1.37657490741209906734996250300,
0.960096608816025830081263783952, 2.21727334428054659638299200789, 3.64420917737192377282506333751, 5.09055560433050006661600839449, 6.31443601514253187913459317505, 6.88966437912808954947995390043, 7.75663756959204948465481190503, 8.502704083337226475699960330998, 9.986759146171986558493080384504, 10.62749750277293710057057871285