L(s) = 1 | − 1.36i·2-s + 3.15i·3-s + 6.14·4-s + 4.29·6-s + 7.94i·7-s − 19.2i·8-s + 17.0·9-s + 27.6·11-s + 19.3i·12-s + 58.1i·13-s + 10.8·14-s + 22.9·16-s + 17i·17-s − 23.2i·18-s − 89.1·19-s + ⋯ |
L(s) = 1 | − 0.481i·2-s + 0.607i·3-s + 0.768·4-s + 0.292·6-s + 0.428i·7-s − 0.851i·8-s + 0.631·9-s + 0.756·11-s + 0.466i·12-s + 1.23i·13-s + 0.206·14-s + 0.358·16-s + 0.242i·17-s − 0.303i·18-s − 1.07·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.636418536\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.636418536\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 - 17iT \) |
good | 2 | \( 1 + 1.36iT - 8T^{2} \) |
| 3 | \( 1 - 3.15iT - 27T^{2} \) |
| 7 | \( 1 - 7.94iT - 343T^{2} \) |
| 11 | \( 1 - 27.6T + 1.33e3T^{2} \) |
| 13 | \( 1 - 58.1iT - 2.19e3T^{2} \) |
| 19 | \( 1 + 89.1T + 6.85e3T^{2} \) |
| 23 | \( 1 + 115. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 128.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 273.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 132. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 470.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 352. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 152. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 527. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 292.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 53.8T + 2.26e5T^{2} \) |
| 67 | \( 1 + 52.9iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 788.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 295. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 720.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 116. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 813.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 794. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72308870657567844805290598227, −10.11629982777248473491691629807, −9.223626366010958020661931753624, −8.261910977690459780226048112589, −6.71165125949716709475273442944, −6.44961528817316771571179940816, −4.67928101884117464611030283685, −3.90021532882361645014123673841, −2.52850687783154344017929280299, −1.37657490741209906734996250300,
0.960096608816025830081263783952, 2.21727334428054659638299200789, 3.64420917737192377282506333751, 5.09055560433050006661600839449, 6.31443601514253187913459317505, 6.88966437912808954947995390043, 7.75663756959204948465481190503, 8.502704083337226475699960330998, 9.986759146171986558493080384504, 10.62749750277293710057057871285