L(s) = 1 | − 3.16i·2-s − 9.73i·3-s − 2.01·4-s − 30.8·6-s + 10.5i·7-s − 18.9i·8-s − 67.8·9-s − 15.1·11-s + 19.6i·12-s − 89.5i·13-s + 33.3·14-s − 76.0·16-s − 17i·17-s + 214. i·18-s − 1.82·19-s + ⋯ |
L(s) = 1 | − 1.11i·2-s − 1.87i·3-s − 0.252·4-s − 2.09·6-s + 0.568i·7-s − 0.836i·8-s − 2.51·9-s − 0.414·11-s + 0.473i·12-s − 1.91i·13-s + 0.636·14-s − 1.18·16-s − 0.242i·17-s + 2.81i·18-s − 0.0220·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.167784015\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.167784015\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + 17iT \) |
good | 2 | \( 1 + 3.16iT - 8T^{2} \) |
| 3 | \( 1 + 9.73iT - 27T^{2} \) |
| 7 | \( 1 - 10.5iT - 343T^{2} \) |
| 11 | \( 1 + 15.1T + 1.33e3T^{2} \) |
| 13 | \( 1 + 89.5iT - 2.19e3T^{2} \) |
| 19 | \( 1 + 1.82T + 6.85e3T^{2} \) |
| 23 | \( 1 - 170. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 53.6T + 2.43e4T^{2} \) |
| 31 | \( 1 - 147.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 94.8iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 374.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 101. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 489. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 84.6iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 467.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 836.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 47.4iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 517.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 398. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 856.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 946. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 765.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 124. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30829690996432119780274277680, −9.105278711589299979896163619252, −7.949615696427502313457641176171, −7.42127650436598864269329544650, −6.21254148234651631107421725737, −5.41333780727177049165576659323, −3.20419416598168237899651621749, −2.55114690348990730881620473249, −1.42010519696998312589892517685, −0.37352713833955578900936499307,
2.58919305078461590428585189613, 4.21337788274443501308540401523, 4.60464153821501434997297191028, 5.82350846886286880371075683567, 6.67492405669201261923197665222, 7.905452241322425063279167010077, 8.883199750278427651722006974493, 9.485861887060824170861856839642, 10.67048327701948563483164154861, 11.04784138620443582609946427812