L(s) = 1 | − 3.16i·2-s − 9.73i·3-s − 2.01·4-s − 30.8·6-s + 10.5i·7-s − 18.9i·8-s − 67.8·9-s − 15.1·11-s + 19.6i·12-s − 89.5i·13-s + 33.3·14-s − 76.0·16-s − 17i·17-s + 214. i·18-s − 1.82·19-s + ⋯ |
L(s) = 1 | − 1.11i·2-s − 1.87i·3-s − 0.252·4-s − 2.09·6-s + 0.568i·7-s − 0.836i·8-s − 2.51·9-s − 0.414·11-s + 0.473i·12-s − 1.91i·13-s + 0.636·14-s − 1.18·16-s − 0.242i·17-s + 2.81i·18-s − 0.0220·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.447−0.894i)Λ(4−s)
Λ(s)=(=(425s/2ΓC(s+3/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
25.0758 |
Root analytic conductor: |
5.00757 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(324,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :3/2), 0.447−0.894i)
|
Particular Values
L(2) |
≈ |
1.167784015 |
L(21) |
≈ |
1.167784015 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+17iT |
good | 2 | 1+3.16iT−8T2 |
| 3 | 1+9.73iT−27T2 |
| 7 | 1−10.5iT−343T2 |
| 11 | 1+15.1T+1.33e3T2 |
| 13 | 1+89.5iT−2.19e3T2 |
| 19 | 1+1.82T+6.85e3T2 |
| 23 | 1−170.iT−1.21e4T2 |
| 29 | 1+53.6T+2.43e4T2 |
| 31 | 1−147.T+2.97e4T2 |
| 37 | 1−94.8iT−5.06e4T2 |
| 41 | 1−374.T+6.89e4T2 |
| 43 | 1−101.iT−7.95e4T2 |
| 47 | 1+489.iT−1.03e5T2 |
| 53 | 1+84.6iT−1.48e5T2 |
| 59 | 1+467.T+2.05e5T2 |
| 61 | 1+836.T+2.26e5T2 |
| 67 | 1−47.4iT−3.00e5T2 |
| 71 | 1−517.T+3.57e5T2 |
| 73 | 1+398.iT−3.89e5T2 |
| 79 | 1+856.T+4.93e5T2 |
| 83 | 1+946.iT−5.71e5T2 |
| 89 | 1−765.T+7.04e5T2 |
| 97 | 1−124.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.30829690996432119780274277680, −9.105278711589299979896163619252, −7.949615696427502313457641176171, −7.42127650436598864269329544650, −6.21254148234651631107421725737, −5.41333780727177049165576659323, −3.20419416598168237899651621749, −2.55114690348990730881620473249, −1.42010519696998312589892517685, −0.37352713833955578900936499307,
2.58919305078461590428585189613, 4.21337788274443501308540401523, 4.60464153821501434997297191028, 5.82350846886286880371075683567, 6.67492405669201261923197665222, 7.905452241322425063279167010077, 8.883199750278427651722006974493, 9.485861887060824170861856839642, 10.67048327701948563483164154861, 11.04784138620443582609946427812