L(s) = 1 | + i·2-s − 8·3-s + 7·4-s − 8i·6-s − 14·7-s + 15i·8-s + 37·9-s − 20i·11-s − 56·12-s + 58i·13-s − 14i·14-s + 41·16-s + (68 − 17i)17-s + 37i·18-s − 80·19-s + ⋯ |
L(s) = 1 | + 0.353i·2-s − 1.53·3-s + 0.875·4-s − 0.544i·6-s − 0.755·7-s + 0.662i·8-s + 1.37·9-s − 0.548i·11-s − 1.34·12-s + 1.23i·13-s − 0.267i·14-s + 0.640·16-s + (0.970 − 0.242i)17-s + 0.484i·18-s − 0.965·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.216 + 0.976i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.216 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.3741054344\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3741054344\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-68 + 17i)T \) |
good | 2 | \( 1 - iT - 8T^{2} \) |
| 3 | \( 1 + 8T + 27T^{2} \) |
| 7 | \( 1 + 14T + 343T^{2} \) |
| 11 | \( 1 + 20iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 58iT - 2.19e3T^{2} \) |
| 19 | \( 1 + 80T + 6.85e3T^{2} \) |
| 23 | \( 1 + 118T + 1.21e4T^{2} \) |
| 29 | \( 1 - 126iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 70iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 134T + 5.06e4T^{2} \) |
| 41 | \( 1 - 100iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 272iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 464iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 642iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 180T + 2.05e5T^{2} \) |
| 61 | \( 1 + 110iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 924iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 90iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 828T + 3.89e5T^{2} \) |
| 79 | \( 1 + 1.33e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 552iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.49e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.37e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61309647394231599820996199012, −9.956245242154209799435762412300, −8.593043546861774463613604128801, −7.28381864162805249318513822867, −6.49523364766233869688273100759, −6.01124231391813385895536605858, −5.02444693701406433432415833681, −3.56259258782748810347260999421, −1.83971311097961428864213452523, −0.15722913712257133124419387649,
1.19789397534352385910691848825, 2.80076432898675624744932301579, 4.16510857777031907530480067285, 5.63334233584287910248058534642, 6.12264425848617884042279752055, 7.03725385481933540366396049317, 8.026934644918999633001956108029, 9.836178569640224529499373716024, 10.29426239868705078187495514854, 10.98331427895250149213930783382