Properties

Label 2-4256-1.1-c1-0-75
Degree $2$
Conductor $4256$
Sign $1$
Analytic cond. $33.9843$
Root an. cond. $5.82960$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.96·3-s + 3.24·5-s + 7-s + 0.855·9-s + 5.08·11-s − 0.544·13-s + 6.36·15-s + 0.841·17-s − 19-s + 1.96·21-s − 1.69·23-s + 5.51·25-s − 4.21·27-s + 10.0·29-s + 1.15·31-s + 9.98·33-s + 3.24·35-s − 4.21·37-s − 1.06·39-s − 3.95·41-s − 3.61·43-s + 2.77·45-s + 4.58·47-s + 49-s + 1.65·51-s − 5.97·53-s + 16.4·55-s + ⋯
L(s)  = 1  + 1.13·3-s + 1.44·5-s + 0.377·7-s + 0.285·9-s + 1.53·11-s − 0.151·13-s + 1.64·15-s + 0.204·17-s − 0.229·19-s + 0.428·21-s − 0.352·23-s + 1.10·25-s − 0.810·27-s + 1.86·29-s + 0.208·31-s + 1.73·33-s + 0.547·35-s − 0.692·37-s − 0.171·39-s − 0.617·41-s − 0.551·43-s + 0.413·45-s + 0.669·47-s + 0.142·49-s + 0.231·51-s − 0.820·53-s + 2.22·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4256 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4256\)    =    \(2^{5} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(33.9843\)
Root analytic conductor: \(5.82960\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4256,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.417188686\)
\(L(\frac12)\) \(\approx\) \(4.417188686\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good3 \( 1 - 1.96T + 3T^{2} \)
5 \( 1 - 3.24T + 5T^{2} \)
11 \( 1 - 5.08T + 11T^{2} \)
13 \( 1 + 0.544T + 13T^{2} \)
17 \( 1 - 0.841T + 17T^{2} \)
23 \( 1 + 1.69T + 23T^{2} \)
29 \( 1 - 10.0T + 29T^{2} \)
31 \( 1 - 1.15T + 31T^{2} \)
37 \( 1 + 4.21T + 37T^{2} \)
41 \( 1 + 3.95T + 41T^{2} \)
43 \( 1 + 3.61T + 43T^{2} \)
47 \( 1 - 4.58T + 47T^{2} \)
53 \( 1 + 5.97T + 53T^{2} \)
59 \( 1 - 1.49T + 59T^{2} \)
61 \( 1 + 8.97T + 61T^{2} \)
67 \( 1 + 4.09T + 67T^{2} \)
71 \( 1 - 9.68T + 71T^{2} \)
73 \( 1 - 6.33T + 73T^{2} \)
79 \( 1 + 4.79T + 79T^{2} \)
83 \( 1 - 17.0T + 83T^{2} \)
89 \( 1 - 3.73T + 89T^{2} \)
97 \( 1 + 17.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.525975900051228910695341706242, −7.889507666325330803539005824610, −6.76036384142486335521652152983, −6.35992102719949393071831264701, −5.47004334430834738318845906121, −4.58965232272853715510031551715, −3.66565017534332581416300496439, −2.79916173469995303855216335271, −1.98792739617034349664976151971, −1.28768996131314166089684227314, 1.28768996131314166089684227314, 1.98792739617034349664976151971, 2.79916173469995303855216335271, 3.66565017534332581416300496439, 4.58965232272853715510031551715, 5.47004334430834738318845906121, 6.35992102719949393071831264701, 6.76036384142486335521652152983, 7.889507666325330803539005824610, 8.525975900051228910695341706242

Graph of the $Z$-function along the critical line