L(s) = 1 | + (−1.25 + 1.25i)5-s + (0.707 + 0.707i)7-s + (2.12 + 2.12i)11-s − 2.59·13-s + (−1.08 − 3.97i)17-s + 4.57i·19-s + (−3.09 − 3.09i)23-s + 1.86i·25-s + (−1.70 + 1.70i)29-s + (1.86 − 1.86i)31-s − 1.77·35-s + (0.372 − 0.372i)37-s + (8.52 + 8.52i)41-s + 2.63i·43-s − 9.67·47-s + ⋯ |
L(s) = 1 | + (−0.560 + 0.560i)5-s + (0.267 + 0.267i)7-s + (0.639 + 0.639i)11-s − 0.720·13-s + (−0.263 − 0.964i)17-s + 1.04i·19-s + (−0.644 − 0.644i)23-s + 0.372i·25-s + (−0.316 + 0.316i)29-s + (0.335 − 0.335i)31-s − 0.299·35-s + (0.0612 − 0.0612i)37-s + (1.33 + 1.33i)41-s + 0.402i·43-s − 1.41·47-s + ⋯ |
Λ(s)=(=(4284s/2ΓC(s)L(s)(−0.989+0.143i)Λ(2−s)
Λ(s)=(=(4284s/2ΓC(s+1/2)L(s)(−0.989+0.143i)Λ(1−s)
Degree: |
2 |
Conductor: |
4284
= 22⋅32⋅7⋅17
|
Sign: |
−0.989+0.143i
|
Analytic conductor: |
34.2079 |
Root analytic conductor: |
5.84875 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4284(4033,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4284, ( :1/2), −0.989+0.143i)
|
Particular Values
L(1) |
≈ |
0.4122573389 |
L(21) |
≈ |
0.4122573389 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−0.707−0.707i)T |
| 17 | 1+(1.08+3.97i)T |
good | 5 | 1+(1.25−1.25i)T−5iT2 |
| 11 | 1+(−2.12−2.12i)T+11iT2 |
| 13 | 1+2.59T+13T2 |
| 19 | 1−4.57iT−19T2 |
| 23 | 1+(3.09+3.09i)T+23iT2 |
| 29 | 1+(1.70−1.70i)T−29iT2 |
| 31 | 1+(−1.86+1.86i)T−31iT2 |
| 37 | 1+(−0.372+0.372i)T−37iT2 |
| 41 | 1+(−8.52−8.52i)T+41iT2 |
| 43 | 1−2.63iT−43T2 |
| 47 | 1+9.67T+47T2 |
| 53 | 1+3.88iT−53T2 |
| 59 | 1+2.63iT−59T2 |
| 61 | 1+(6.61+6.61i)T+61iT2 |
| 67 | 1+14.9T+67T2 |
| 71 | 1+(10.1−10.1i)T−71iT2 |
| 73 | 1+(−2.22+2.22i)T−73iT2 |
| 79 | 1+(−12.2−12.2i)T+79iT2 |
| 83 | 1+12.6iT−83T2 |
| 89 | 1+2.05T+89T2 |
| 97 | 1+(−5.08+5.08i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.721258524622026226992200826183, −7.83421434268766365614337477670, −7.44318492294681857180512084483, −6.62715173944931811348381365012, −5.94987892155813546545957563547, −4.87329171354037681969327420960, −4.33110345133497116660275100775, −3.36642470547638034309603468408, −2.52240391368170323906100751277, −1.51684071757675467573098975644,
0.11904979256340121145620600998, 1.26575016074157810792368210388, 2.39310618181674495304608371329, 3.53138834227532555850093100977, 4.25246153816916240512087238170, 4.84741068933841477436032792791, 5.84432913833350252015971263355, 6.50275231233782144783337377743, 7.48814984022643412903506029917, 7.906996605391901355830194400859