Properties

Label 2-4304-1.1-c1-0-107
Degree $2$
Conductor $4304$
Sign $-1$
Analytic cond. $34.3676$
Root an. cond. $5.86238$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.34·3-s + 3.90·5-s + 0.487·7-s − 1.19·9-s − 4.04·11-s + 3.53·13-s − 5.24·15-s − 6.37·17-s − 0.975·19-s − 0.655·21-s − 0.750·23-s + 10.2·25-s + 5.63·27-s − 4.08·29-s + 7.86·31-s + 5.44·33-s + 1.90·35-s − 4.22·37-s − 4.75·39-s − 2.07·41-s − 10.7·43-s − 4.66·45-s − 9.31·47-s − 6.76·49-s + 8.56·51-s + 11.1·53-s − 15.8·55-s + ⋯
L(s)  = 1  − 0.776·3-s + 1.74·5-s + 0.184·7-s − 0.397·9-s − 1.22·11-s + 0.981·13-s − 1.35·15-s − 1.54·17-s − 0.223·19-s − 0.143·21-s − 0.156·23-s + 2.05·25-s + 1.08·27-s − 0.757·29-s + 1.41·31-s + 0.947·33-s + 0.322·35-s − 0.694·37-s − 0.761·39-s − 0.323·41-s − 1.63·43-s − 0.694·45-s − 1.35·47-s − 0.965·49-s + 1.19·51-s + 1.52·53-s − 2.13·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4304\)    =    \(2^{4} \cdot 269\)
Sign: $-1$
Analytic conductor: \(34.3676\)
Root analytic conductor: \(5.86238\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4304,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
269 \( 1 - T \)
good3 \( 1 + 1.34T + 3T^{2} \)
5 \( 1 - 3.90T + 5T^{2} \)
7 \( 1 - 0.487T + 7T^{2} \)
11 \( 1 + 4.04T + 11T^{2} \)
13 \( 1 - 3.53T + 13T^{2} \)
17 \( 1 + 6.37T + 17T^{2} \)
19 \( 1 + 0.975T + 19T^{2} \)
23 \( 1 + 0.750T + 23T^{2} \)
29 \( 1 + 4.08T + 29T^{2} \)
31 \( 1 - 7.86T + 31T^{2} \)
37 \( 1 + 4.22T + 37T^{2} \)
41 \( 1 + 2.07T + 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 + 9.31T + 47T^{2} \)
53 \( 1 - 11.1T + 53T^{2} \)
59 \( 1 - 2.98T + 59T^{2} \)
61 \( 1 + 7.53T + 61T^{2} \)
67 \( 1 + 3.51T + 67T^{2} \)
71 \( 1 + 14.1T + 71T^{2} \)
73 \( 1 + 9.75T + 73T^{2} \)
79 \( 1 + 2.29T + 79T^{2} \)
83 \( 1 - 17.1T + 83T^{2} \)
89 \( 1 - 1.86T + 89T^{2} \)
97 \( 1 + 9.63T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.293681672390597665803250741591, −6.95902862183388946670158939829, −6.32859393734845081222928972925, −5.88625135694040973037667429887, −5.15446269506707991558664823736, −4.63409495869031594267188865522, −3.15273637781708652618152298017, −2.31402949087458923211614839918, −1.50539721523385660141825486145, 0, 1.50539721523385660141825486145, 2.31402949087458923211614839918, 3.15273637781708652618152298017, 4.63409495869031594267188865522, 5.15446269506707991558664823736, 5.88625135694040973037667429887, 6.32859393734845081222928972925, 6.95902862183388946670158939829, 8.293681672390597665803250741591

Graph of the $Z$-function along the critical line