L(s) = 1 | − 1.34·3-s + 3.90·5-s + 0.487·7-s − 1.19·9-s − 4.04·11-s + 3.53·13-s − 5.24·15-s − 6.37·17-s − 0.975·19-s − 0.655·21-s − 0.750·23-s + 10.2·25-s + 5.63·27-s − 4.08·29-s + 7.86·31-s + 5.44·33-s + 1.90·35-s − 4.22·37-s − 4.75·39-s − 2.07·41-s − 10.7·43-s − 4.66·45-s − 9.31·47-s − 6.76·49-s + 8.56·51-s + 11.1·53-s − 15.8·55-s + ⋯ |
L(s) = 1 | − 0.776·3-s + 1.74·5-s + 0.184·7-s − 0.397·9-s − 1.22·11-s + 0.981·13-s − 1.35·15-s − 1.54·17-s − 0.223·19-s − 0.143·21-s − 0.156·23-s + 2.05·25-s + 1.08·27-s − 0.757·29-s + 1.41·31-s + 0.947·33-s + 0.322·35-s − 0.694·37-s − 0.761·39-s − 0.323·41-s − 1.63·43-s − 0.694·45-s − 1.35·47-s − 0.965·49-s + 1.19·51-s + 1.52·53-s − 2.13·55-s + ⋯ |
Λ(s)=(=(4304s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4304s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 269 | 1−T |
good | 3 | 1+1.34T+3T2 |
| 5 | 1−3.90T+5T2 |
| 7 | 1−0.487T+7T2 |
| 11 | 1+4.04T+11T2 |
| 13 | 1−3.53T+13T2 |
| 17 | 1+6.37T+17T2 |
| 19 | 1+0.975T+19T2 |
| 23 | 1+0.750T+23T2 |
| 29 | 1+4.08T+29T2 |
| 31 | 1−7.86T+31T2 |
| 37 | 1+4.22T+37T2 |
| 41 | 1+2.07T+41T2 |
| 43 | 1+10.7T+43T2 |
| 47 | 1+9.31T+47T2 |
| 53 | 1−11.1T+53T2 |
| 59 | 1−2.98T+59T2 |
| 61 | 1+7.53T+61T2 |
| 67 | 1+3.51T+67T2 |
| 71 | 1+14.1T+71T2 |
| 73 | 1+9.75T+73T2 |
| 79 | 1+2.29T+79T2 |
| 83 | 1−17.1T+83T2 |
| 89 | 1−1.86T+89T2 |
| 97 | 1+9.63T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.293681672390597665803250741591, −6.95902862183388946670158939829, −6.32859393734845081222928972925, −5.88625135694040973037667429887, −5.15446269506707991558664823736, −4.63409495869031594267188865522, −3.15273637781708652618152298017, −2.31402949087458923211614839918, −1.50539721523385660141825486145, 0,
1.50539721523385660141825486145, 2.31402949087458923211614839918, 3.15273637781708652618152298017, 4.63409495869031594267188865522, 5.15446269506707991558664823736, 5.88625135694040973037667429887, 6.32859393734845081222928972925, 6.95902862183388946670158939829, 8.293681672390597665803250741591