L(s) = 1 | − 1.65·3-s + 0.725·5-s − 1.29·7-s − 0.269·9-s + 3.71·11-s + 2.30·13-s − 1.19·15-s + 6.32·17-s − 0.0212·19-s + 2.14·21-s + 1.30·23-s − 4.47·25-s + 5.40·27-s − 2.06·29-s + 5.82·31-s − 6.14·33-s − 0.942·35-s − 7.25·37-s − 3.81·39-s + 8.77·41-s − 4.52·43-s − 0.195·45-s − 3.85·47-s − 5.31·49-s − 10.4·51-s − 6.86·53-s + 2.69·55-s + ⋯ |
L(s) = 1 | − 0.954·3-s + 0.324·5-s − 0.491·7-s − 0.0896·9-s + 1.12·11-s + 0.640·13-s − 0.309·15-s + 1.53·17-s − 0.00487·19-s + 0.468·21-s + 0.272·23-s − 0.894·25-s + 1.03·27-s − 0.383·29-s + 1.04·31-s − 1.06·33-s − 0.159·35-s − 1.19·37-s − 0.610·39-s + 1.37·41-s − 0.689·43-s − 0.0290·45-s − 0.562·47-s − 0.758·49-s − 1.46·51-s − 0.943·53-s + 0.363·55-s + ⋯ |
Λ(s)=(=(4304s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4304s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.412096633 |
L(21) |
≈ |
1.412096633 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 269 | 1+T |
good | 3 | 1+1.65T+3T2 |
| 5 | 1−0.725T+5T2 |
| 7 | 1+1.29T+7T2 |
| 11 | 1−3.71T+11T2 |
| 13 | 1−2.30T+13T2 |
| 17 | 1−6.32T+17T2 |
| 19 | 1+0.0212T+19T2 |
| 23 | 1−1.30T+23T2 |
| 29 | 1+2.06T+29T2 |
| 31 | 1−5.82T+31T2 |
| 37 | 1+7.25T+37T2 |
| 41 | 1−8.77T+41T2 |
| 43 | 1+4.52T+43T2 |
| 47 | 1+3.85T+47T2 |
| 53 | 1+6.86T+53T2 |
| 59 | 1+7.84T+59T2 |
| 61 | 1−3.84T+61T2 |
| 67 | 1−9.31T+67T2 |
| 71 | 1−0.643T+71T2 |
| 73 | 1+2.97T+73T2 |
| 79 | 1+0.418T+79T2 |
| 83 | 1−15.6T+83T2 |
| 89 | 1−10.3T+89T2 |
| 97 | 1−5.07T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.372228525960342914380569649162, −7.61375687970555994711177676759, −6.55100430544147304714094861982, −6.25032696596805641788441595539, −5.57040258060339934528516231920, −4.82061949452151046088171028374, −3.73766046773862869153350459832, −3.11518416840174933991605960703, −1.69330086616727328574300114513, −0.73536141609062732824911942677,
0.73536141609062732824911942677, 1.69330086616727328574300114513, 3.11518416840174933991605960703, 3.73766046773862869153350459832, 4.82061949452151046088171028374, 5.57040258060339934528516231920, 6.25032696596805641788441595539, 6.55100430544147304714094861982, 7.61375687970555994711177676759, 8.372228525960342914380569649162