Properties

Label 2-4304-1.1-c1-0-35
Degree $2$
Conductor $4304$
Sign $1$
Analytic cond. $34.3676$
Root an. cond. $5.86238$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.65·3-s + 0.725·5-s − 1.29·7-s − 0.269·9-s + 3.71·11-s + 2.30·13-s − 1.19·15-s + 6.32·17-s − 0.0212·19-s + 2.14·21-s + 1.30·23-s − 4.47·25-s + 5.40·27-s − 2.06·29-s + 5.82·31-s − 6.14·33-s − 0.942·35-s − 7.25·37-s − 3.81·39-s + 8.77·41-s − 4.52·43-s − 0.195·45-s − 3.85·47-s − 5.31·49-s − 10.4·51-s − 6.86·53-s + 2.69·55-s + ⋯
L(s)  = 1  − 0.954·3-s + 0.324·5-s − 0.491·7-s − 0.0896·9-s + 1.12·11-s + 0.640·13-s − 0.309·15-s + 1.53·17-s − 0.00487·19-s + 0.468·21-s + 0.272·23-s − 0.894·25-s + 1.03·27-s − 0.383·29-s + 1.04·31-s − 1.06·33-s − 0.159·35-s − 1.19·37-s − 0.610·39-s + 1.37·41-s − 0.689·43-s − 0.0290·45-s − 0.562·47-s − 0.758·49-s − 1.46·51-s − 0.943·53-s + 0.363·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4304\)    =    \(2^{4} \cdot 269\)
Sign: $1$
Analytic conductor: \(34.3676\)
Root analytic conductor: \(5.86238\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4304,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.412096633\)
\(L(\frac12)\) \(\approx\) \(1.412096633\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
269 \( 1 + T \)
good3 \( 1 + 1.65T + 3T^{2} \)
5 \( 1 - 0.725T + 5T^{2} \)
7 \( 1 + 1.29T + 7T^{2} \)
11 \( 1 - 3.71T + 11T^{2} \)
13 \( 1 - 2.30T + 13T^{2} \)
17 \( 1 - 6.32T + 17T^{2} \)
19 \( 1 + 0.0212T + 19T^{2} \)
23 \( 1 - 1.30T + 23T^{2} \)
29 \( 1 + 2.06T + 29T^{2} \)
31 \( 1 - 5.82T + 31T^{2} \)
37 \( 1 + 7.25T + 37T^{2} \)
41 \( 1 - 8.77T + 41T^{2} \)
43 \( 1 + 4.52T + 43T^{2} \)
47 \( 1 + 3.85T + 47T^{2} \)
53 \( 1 + 6.86T + 53T^{2} \)
59 \( 1 + 7.84T + 59T^{2} \)
61 \( 1 - 3.84T + 61T^{2} \)
67 \( 1 - 9.31T + 67T^{2} \)
71 \( 1 - 0.643T + 71T^{2} \)
73 \( 1 + 2.97T + 73T^{2} \)
79 \( 1 + 0.418T + 79T^{2} \)
83 \( 1 - 15.6T + 83T^{2} \)
89 \( 1 - 10.3T + 89T^{2} \)
97 \( 1 - 5.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.372228525960342914380569649162, −7.61375687970555994711177676759, −6.55100430544147304714094861982, −6.25032696596805641788441595539, −5.57040258060339934528516231920, −4.82061949452151046088171028374, −3.73766046773862869153350459832, −3.11518416840174933991605960703, −1.69330086616727328574300114513, −0.73536141609062732824911942677, 0.73536141609062732824911942677, 1.69330086616727328574300114513, 3.11518416840174933991605960703, 3.73766046773862869153350459832, 4.82061949452151046088171028374, 5.57040258060339934528516231920, 6.25032696596805641788441595539, 6.55100430544147304714094861982, 7.61375687970555994711177676759, 8.372228525960342914380569649162

Graph of the $Z$-function along the critical line