L(s) = 1 | + 15·5-s + 25·7-s + 15·11-s + 20·13-s + 72·17-s − 2·19-s − 114·23-s + 100·25-s + 30·29-s − 101·31-s + 375·35-s − 430·37-s − 30·41-s − 110·43-s + 330·47-s + 282·49-s + 621·53-s + 225·55-s + 660·59-s − 376·61-s + 300·65-s + 250·67-s + 360·71-s + 785·73-s + 375·77-s − 488·79-s − 489·83-s + ⋯ |
L(s) = 1 | + 1.34·5-s + 1.34·7-s + 0.411·11-s + 0.426·13-s + 1.02·17-s − 0.0241·19-s − 1.03·23-s + 4/5·25-s + 0.192·29-s − 0.585·31-s + 1.81·35-s − 1.91·37-s − 0.114·41-s − 0.390·43-s + 1.02·47-s + 0.822·49-s + 1.60·53-s + 0.551·55-s + 1.45·59-s − 0.789·61-s + 0.572·65-s + 0.455·67-s + 0.601·71-s + 1.25·73-s + 0.555·77-s − 0.694·79-s − 0.646·83-s + ⋯ |
Λ(s)=(=(432s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(432s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.050372157 |
L(21) |
≈ |
3.050372157 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−3pT+p3T2 |
| 7 | 1−25T+p3T2 |
| 11 | 1−15T+p3T2 |
| 13 | 1−20T+p3T2 |
| 17 | 1−72T+p3T2 |
| 19 | 1+2T+p3T2 |
| 23 | 1+114T+p3T2 |
| 29 | 1−30T+p3T2 |
| 31 | 1+101T+p3T2 |
| 37 | 1+430T+p3T2 |
| 41 | 1+30T+p3T2 |
| 43 | 1+110T+p3T2 |
| 47 | 1−330T+p3T2 |
| 53 | 1−621T+p3T2 |
| 59 | 1−660T+p3T2 |
| 61 | 1+376T+p3T2 |
| 67 | 1−250T+p3T2 |
| 71 | 1−360T+p3T2 |
| 73 | 1−785T+p3T2 |
| 79 | 1+488T+p3T2 |
| 83 | 1+489T+p3T2 |
| 89 | 1+450T+p3T2 |
| 97 | 1+1105T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.59199335777222656212673297287, −9.944550218558164504304461614812, −8.904790318448454321747239782596, −8.115474735284305216473207260849, −6.96686166741679146077798305058, −5.78352649374207826925743295618, −5.19845343951551946234578824278, −3.82763111411129667701989521839, −2.15762877241039560527557218277, −1.30551836432768445183321594073,
1.30551836432768445183321594073, 2.15762877241039560527557218277, 3.82763111411129667701989521839, 5.19845343951551946234578824278, 5.78352649374207826925743295618, 6.96686166741679146077798305058, 8.115474735284305216473207260849, 8.904790318448454321747239782596, 9.944550218558164504304461614812, 10.59199335777222656212673297287