Properties

Label 2-435-87.41-c1-0-10
Degree 22
Conductor 435435
Sign 0.3360.941i-0.336 - 0.941i
Analytic cond. 3.473493.47349
Root an. cond. 1.863731.86373
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.398 − 0.398i)2-s + (0.654 + 1.60i)3-s + 1.68i·4-s + 5-s + (0.899 + 0.378i)6-s − 4.31·7-s + (1.46 + 1.46i)8-s + (−2.14 + 2.10i)9-s + (0.398 − 0.398i)10-s + (−0.656 + 0.656i)11-s + (−2.69 + 1.10i)12-s + 2.82i·13-s + (−1.72 + 1.72i)14-s + (0.654 + 1.60i)15-s − 2.19·16-s + (4.74 − 4.74i)17-s + ⋯
L(s)  = 1  + (0.281 − 0.281i)2-s + (0.378 + 0.925i)3-s + 0.841i·4-s + 0.447·5-s + (0.367 + 0.154i)6-s − 1.63·7-s + (0.518 + 0.518i)8-s + (−0.714 + 0.700i)9-s + (0.126 − 0.126i)10-s + (−0.197 + 0.197i)11-s + (−0.778 + 0.318i)12-s + 0.782i·13-s + (−0.459 + 0.459i)14-s + (0.169 + 0.414i)15-s − 0.548·16-s + (1.15 − 1.15i)17-s + ⋯

Functional equation

Λ(s)=(435s/2ΓC(s)L(s)=((0.3360.941i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.336 - 0.941i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(435s/2ΓC(s+1/2)L(s)=((0.3360.941i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.336 - 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 435435    =    35293 \cdot 5 \cdot 29
Sign: 0.3360.941i-0.336 - 0.941i
Analytic conductor: 3.473493.47349
Root analytic conductor: 1.863731.86373
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ435(41,)\chi_{435} (41, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 435, ( :1/2), 0.3360.941i)(2,\ 435,\ (\ :1/2),\ -0.336 - 0.941i)

Particular Values

L(1)L(1) \approx 0.881892+1.25111i0.881892 + 1.25111i
L(12)L(\frac12) \approx 0.881892+1.25111i0.881892 + 1.25111i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(0.6541.60i)T 1 + (-0.654 - 1.60i)T
5 1T 1 - T
29 1+(1.255.23i)T 1 + (1.25 - 5.23i)T
good2 1+(0.398+0.398i)T2iT2 1 + (-0.398 + 0.398i)T - 2iT^{2}
7 1+4.31T+7T2 1 + 4.31T + 7T^{2}
11 1+(0.6560.656i)T11iT2 1 + (0.656 - 0.656i)T - 11iT^{2}
13 12.82iT13T2 1 - 2.82iT - 13T^{2}
17 1+(4.74+4.74i)T17iT2 1 + (-4.74 + 4.74i)T - 17iT^{2}
19 1+(1.211.21i)T+19iT2 1 + (-1.21 - 1.21i)T + 19iT^{2}
23 1+1.96iT23T2 1 + 1.96iT - 23T^{2}
31 1+(2.912.91i)T+31iT2 1 + (-2.91 - 2.91i)T + 31iT^{2}
37 1+(3.89+3.89i)T37iT2 1 + (-3.89 + 3.89i)T - 37iT^{2}
41 1+(2.912.91i)T+41iT2 1 + (-2.91 - 2.91i)T + 41iT^{2}
43 1+(4.824.82i)T+43iT2 1 + (-4.82 - 4.82i)T + 43iT^{2}
47 1+(6.226.22i)T+47iT2 1 + (-6.22 - 6.22i)T + 47iT^{2}
53 1+7.97iT53T2 1 + 7.97iT - 53T^{2}
59 1+7.91iT59T2 1 + 7.91iT - 59T^{2}
61 1+(2.742.74i)T+61iT2 1 + (-2.74 - 2.74i)T + 61iT^{2}
67 19.91iT67T2 1 - 9.91iT - 67T^{2}
71 1+5.70T+71T2 1 + 5.70T + 71T^{2}
73 1+(6.98+6.98i)T73iT2 1 + (-6.98 + 6.98i)T - 73iT^{2}
79 1+(3.133.13i)T+79iT2 1 + (-3.13 - 3.13i)T + 79iT^{2}
83 1+13.0iT83T2 1 + 13.0iT - 83T^{2}
89 1+(10.510.5i)T89iT2 1 + (10.5 - 10.5i)T - 89iT^{2}
97 1+(8.43+8.43i)T97iT2 1 + (-8.43 + 8.43i)T - 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.43369528289542930444093604999, −10.36848872753445487063562708527, −9.544921667036682928947887488191, −9.072049097023514517877058488349, −7.80018444148363812087034570722, −6.79145981111858771673906386953, −5.51937311264141469727408975138, −4.36173938305222711210261019413, −3.29942064907982145089235254767, −2.65246676123349163746049736224, 0.859193632346834030970417737182, 2.54629883523220254339790391871, 3.72657715249554248895017139120, 5.74970355939766795666433193192, 5.94664250485621673684292764125, 6.96357375432715058630145399145, 7.928312392832504828264349173179, 9.212706783977088552077286435713, 9.895069172272849188455066475105, 10.64228217469784193387860899549

Graph of the ZZ-function along the critical line