L(s) = 1 | + (0.398 − 0.398i)2-s + (0.654 + 1.60i)3-s + 1.68i·4-s + 5-s + (0.899 + 0.378i)6-s − 4.31·7-s + (1.46 + 1.46i)8-s + (−2.14 + 2.10i)9-s + (0.398 − 0.398i)10-s + (−0.656 + 0.656i)11-s + (−2.69 + 1.10i)12-s + 2.82i·13-s + (−1.72 + 1.72i)14-s + (0.654 + 1.60i)15-s − 2.19·16-s + (4.74 − 4.74i)17-s + ⋯ |
L(s) = 1 | + (0.281 − 0.281i)2-s + (0.378 + 0.925i)3-s + 0.841i·4-s + 0.447·5-s + (0.367 + 0.154i)6-s − 1.63·7-s + (0.518 + 0.518i)8-s + (−0.714 + 0.700i)9-s + (0.126 − 0.126i)10-s + (−0.197 + 0.197i)11-s + (−0.778 + 0.318i)12-s + 0.782i·13-s + (−0.459 + 0.459i)14-s + (0.169 + 0.414i)15-s − 0.548·16-s + (1.15 − 1.15i)17-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)(−0.336−0.941i)Λ(2−s)
Λ(s)=(=(435s/2ΓC(s+1/2)L(s)(−0.336−0.941i)Λ(1−s)
Degree: |
2 |
Conductor: |
435
= 3⋅5⋅29
|
Sign: |
−0.336−0.941i
|
Analytic conductor: |
3.47349 |
Root analytic conductor: |
1.86373 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ435(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 435, ( :1/2), −0.336−0.941i)
|
Particular Values
L(1) |
≈ |
0.881892+1.25111i |
L(21) |
≈ |
0.881892+1.25111i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.654−1.60i)T |
| 5 | 1−T |
| 29 | 1+(1.25−5.23i)T |
good | 2 | 1+(−0.398+0.398i)T−2iT2 |
| 7 | 1+4.31T+7T2 |
| 11 | 1+(0.656−0.656i)T−11iT2 |
| 13 | 1−2.82iT−13T2 |
| 17 | 1+(−4.74+4.74i)T−17iT2 |
| 19 | 1+(−1.21−1.21i)T+19iT2 |
| 23 | 1+1.96iT−23T2 |
| 31 | 1+(−2.91−2.91i)T+31iT2 |
| 37 | 1+(−3.89+3.89i)T−37iT2 |
| 41 | 1+(−2.91−2.91i)T+41iT2 |
| 43 | 1+(−4.82−4.82i)T+43iT2 |
| 47 | 1+(−6.22−6.22i)T+47iT2 |
| 53 | 1+7.97iT−53T2 |
| 59 | 1+7.91iT−59T2 |
| 61 | 1+(−2.74−2.74i)T+61iT2 |
| 67 | 1−9.91iT−67T2 |
| 71 | 1+5.70T+71T2 |
| 73 | 1+(−6.98+6.98i)T−73iT2 |
| 79 | 1+(−3.13−3.13i)T+79iT2 |
| 83 | 1+13.0iT−83T2 |
| 89 | 1+(10.5−10.5i)T−89iT2 |
| 97 | 1+(−8.43+8.43i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.43369528289542930444093604999, −10.36848872753445487063562708527, −9.544921667036682928947887488191, −9.072049097023514517877058488349, −7.80018444148363812087034570722, −6.79145981111858771673906386953, −5.51937311264141469727408975138, −4.36173938305222711210261019413, −3.29942064907982145089235254767, −2.65246676123349163746049736224,
0.859193632346834030970417737182, 2.54629883523220254339790391871, 3.72657715249554248895017139120, 5.74970355939766795666433193192, 5.94664250485621673684292764125, 6.96357375432715058630145399145, 7.928312392832504828264349173179, 9.212706783977088552077286435713, 9.895069172272849188455066475105, 10.64228217469784193387860899549