L(s) = 1 | + (0.412 + 1.80i)2-s + (−0.900 − 0.433i)3-s + (−1.29 + 0.625i)4-s + (0.222 + 0.974i)5-s + (0.412 − 1.80i)6-s + (−2.78 − 1.34i)7-s + (0.645 + 0.809i)8-s + (0.623 + 0.781i)9-s + (−1.67 + 0.804i)10-s + (−1.04 + 1.31i)11-s + 1.44·12-s + (−4.34 + 5.44i)13-s + (1.27 − 5.60i)14-s + (0.222 − 0.974i)15-s + (−2.99 + 3.75i)16-s − 2.75·17-s + ⋯ |
L(s) = 1 | + (0.291 + 1.27i)2-s + (−0.520 − 0.250i)3-s + (−0.649 + 0.312i)4-s + (0.0995 + 0.436i)5-s + (0.168 − 0.738i)6-s + (−1.05 − 0.507i)7-s + (0.228 + 0.286i)8-s + (0.207 + 0.260i)9-s + (−0.528 + 0.254i)10-s + (−0.316 + 0.396i)11-s + 0.416·12-s + (−1.20 + 1.51i)13-s + (0.341 − 1.49i)14-s + (0.0574 − 0.251i)15-s + (−0.748 + 0.939i)16-s − 0.667·17-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)(−0.977+0.209i)Λ(2−s)
Λ(s)=(=(435s/2ΓC(s+1/2)L(s)(−0.977+0.209i)Λ(1−s)
Degree: |
2 |
Conductor: |
435
= 3⋅5⋅29
|
Sign: |
−0.977+0.209i
|
Analytic conductor: |
3.47349 |
Root analytic conductor: |
1.86373 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ435(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 435, ( :1/2), −0.977+0.209i)
|
Particular Values
L(1) |
≈ |
0.0872512−0.825058i |
L(21) |
≈ |
0.0872512−0.825058i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.900+0.433i)T |
| 5 | 1+(−0.222−0.974i)T |
| 29 | 1+(−5.26+1.14i)T |
good | 2 | 1+(−0.412−1.80i)T+(−1.80+0.867i)T2 |
| 7 | 1+(2.78+1.34i)T+(4.36+5.47i)T2 |
| 11 | 1+(1.04−1.31i)T+(−2.44−10.7i)T2 |
| 13 | 1+(4.34−5.44i)T+(−2.89−12.6i)T2 |
| 17 | 1+2.75T+17T2 |
| 19 | 1+(−0.370+0.178i)T+(11.8−14.8i)T2 |
| 23 | 1+(−0.230+1.00i)T+(−20.7−9.97i)T2 |
| 31 | 1+(−1.18−5.18i)T+(−27.9+13.4i)T2 |
| 37 | 1+(0.609+0.764i)T+(−8.23+36.0i)T2 |
| 41 | 1+2.72T+41T2 |
| 43 | 1+(−1.18+5.18i)T+(−38.7−18.6i)T2 |
| 47 | 1+(−2.28+2.86i)T+(−10.4−45.8i)T2 |
| 53 | 1+(−2.46−10.7i)T+(−47.7+22.9i)T2 |
| 59 | 1−0.766T+59T2 |
| 61 | 1+(−9.96−4.79i)T+(38.0+47.6i)T2 |
| 67 | 1+(1.18+1.48i)T+(−14.9+65.3i)T2 |
| 71 | 1+(−4.45+5.58i)T+(−15.7−69.2i)T2 |
| 73 | 1+(3.60−15.8i)T+(−65.7−31.6i)T2 |
| 79 | 1+(−3.51−4.41i)T+(−17.5+77.0i)T2 |
| 83 | 1+(−8.93+4.30i)T+(51.7−64.8i)T2 |
| 89 | 1+(1.17+5.13i)T+(−80.1+38.6i)T2 |
| 97 | 1+(7.56−3.64i)T+(60.4−75.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.73331914381092279911070259041, −10.61770493018053490295794606580, −9.843126653071107032486382074945, −8.728756807108625970508610358301, −7.32805087838512960647138331247, −6.91085756529566966229870800465, −6.34178195720168060059746219442, −5.10974293566735202912674288779, −4.20040379958076696136839576379, −2.34402088588052324053978815715,
0.47823968367375775903247101043, 2.48222550322781498234772879359, 3.34841393730486730376770677846, 4.69274427342329548777880379311, 5.58356391024381565873503554972, 6.73715111821151005185241111576, 8.053218950915987365344504450454, 9.394863567503954433351038970113, 9.968211684467723635757569981115, 10.67776797276682000361960061320