L(s) = 1 | + (0.412 + 1.80i)2-s + (−0.900 − 0.433i)3-s + (−1.29 + 0.625i)4-s + (0.222 + 0.974i)5-s + (0.412 − 1.80i)6-s + (−2.78 − 1.34i)7-s + (0.645 + 0.809i)8-s + (0.623 + 0.781i)9-s + (−1.67 + 0.804i)10-s + (−1.04 + 1.31i)11-s + 1.44·12-s + (−4.34 + 5.44i)13-s + (1.27 − 5.60i)14-s + (0.222 − 0.974i)15-s + (−2.99 + 3.75i)16-s − 2.75·17-s + ⋯ |
L(s) = 1 | + (0.291 + 1.27i)2-s + (−0.520 − 0.250i)3-s + (−0.649 + 0.312i)4-s + (0.0995 + 0.436i)5-s + (0.168 − 0.738i)6-s + (−1.05 − 0.507i)7-s + (0.228 + 0.286i)8-s + (0.207 + 0.260i)9-s + (−0.528 + 0.254i)10-s + (−0.316 + 0.396i)11-s + 0.416·12-s + (−1.20 + 1.51i)13-s + (0.341 − 1.49i)14-s + (0.0574 − 0.251i)15-s + (−0.748 + 0.939i)16-s − 0.667·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.977 + 0.209i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.977 + 0.209i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0872512 - 0.825058i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0872512 - 0.825058i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.900 + 0.433i)T \) |
| 5 | \( 1 + (-0.222 - 0.974i)T \) |
| 29 | \( 1 + (-5.26 + 1.14i)T \) |
good | 2 | \( 1 + (-0.412 - 1.80i)T + (-1.80 + 0.867i)T^{2} \) |
| 7 | \( 1 + (2.78 + 1.34i)T + (4.36 + 5.47i)T^{2} \) |
| 11 | \( 1 + (1.04 - 1.31i)T + (-2.44 - 10.7i)T^{2} \) |
| 13 | \( 1 + (4.34 - 5.44i)T + (-2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + 2.75T + 17T^{2} \) |
| 19 | \( 1 + (-0.370 + 0.178i)T + (11.8 - 14.8i)T^{2} \) |
| 23 | \( 1 + (-0.230 + 1.00i)T + (-20.7 - 9.97i)T^{2} \) |
| 31 | \( 1 + (-1.18 - 5.18i)T + (-27.9 + 13.4i)T^{2} \) |
| 37 | \( 1 + (0.609 + 0.764i)T + (-8.23 + 36.0i)T^{2} \) |
| 41 | \( 1 + 2.72T + 41T^{2} \) |
| 43 | \( 1 + (-1.18 + 5.18i)T + (-38.7 - 18.6i)T^{2} \) |
| 47 | \( 1 + (-2.28 + 2.86i)T + (-10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (-2.46 - 10.7i)T + (-47.7 + 22.9i)T^{2} \) |
| 59 | \( 1 - 0.766T + 59T^{2} \) |
| 61 | \( 1 + (-9.96 - 4.79i)T + (38.0 + 47.6i)T^{2} \) |
| 67 | \( 1 + (1.18 + 1.48i)T + (-14.9 + 65.3i)T^{2} \) |
| 71 | \( 1 + (-4.45 + 5.58i)T + (-15.7 - 69.2i)T^{2} \) |
| 73 | \( 1 + (3.60 - 15.8i)T + (-65.7 - 31.6i)T^{2} \) |
| 79 | \( 1 + (-3.51 - 4.41i)T + (-17.5 + 77.0i)T^{2} \) |
| 83 | \( 1 + (-8.93 + 4.30i)T + (51.7 - 64.8i)T^{2} \) |
| 89 | \( 1 + (1.17 + 5.13i)T + (-80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 + (7.56 - 3.64i)T + (60.4 - 75.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.73331914381092279911070259041, −10.61770493018053490295794606580, −9.843126653071107032486382074945, −8.728756807108625970508610358301, −7.32805087838512960647138331247, −6.91085756529566966229870800465, −6.34178195720168060059746219442, −5.10974293566735202912674288779, −4.20040379958076696136839576379, −2.34402088588052324053978815715,
0.47823968367375775903247101043, 2.48222550322781498234772879359, 3.34841393730486730376770677846, 4.69274427342329548777880379311, 5.58356391024381565873503554972, 6.73715111821151005185241111576, 8.053218950915987365344504450454, 9.394863567503954433351038970113, 9.968211684467723635757569981115, 10.67776797276682000361960061320