L(s) = 1 | + (1.12 − 1.41i)2-s + (−0.222 + 0.974i)3-s + (−0.280 − 1.22i)4-s + (−0.623 + 0.781i)5-s + (1.12 + 1.41i)6-s + (−0.863 + 3.78i)7-s + (1.20 + 0.580i)8-s + (−0.900 − 0.433i)9-s + (0.401 + 1.75i)10-s + (−2.71 + 1.30i)11-s + 1.25·12-s + (3.14 − 1.51i)13-s + (4.36 + 5.47i)14-s + (−0.623 − 0.781i)15-s + (4.44 − 2.14i)16-s − 0.506·17-s + ⋯ |
L(s) = 1 | + (0.795 − 0.997i)2-s + (−0.128 + 0.562i)3-s + (−0.140 − 0.613i)4-s + (−0.278 + 0.349i)5-s + (0.459 + 0.576i)6-s + (−0.326 + 1.43i)7-s + (0.426 + 0.205i)8-s + (−0.300 − 0.144i)9-s + (0.127 + 0.556i)10-s + (−0.819 + 0.394i)11-s + 0.363·12-s + (0.871 − 0.419i)13-s + (1.16 + 1.46i)14-s + (−0.160 − 0.201i)15-s + (1.11 − 0.535i)16-s − 0.122·17-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)(0.874−0.485i)Λ(2−s)
Λ(s)=(=(435s/2ΓC(s+1/2)L(s)(0.874−0.485i)Λ(1−s)
Degree: |
2 |
Conductor: |
435
= 3⋅5⋅29
|
Sign: |
0.874−0.485i
|
Analytic conductor: |
3.47349 |
Root analytic conductor: |
1.86373 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ435(226,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 435, ( :1/2), 0.874−0.485i)
|
Particular Values
L(1) |
≈ |
1.77989+0.461469i |
L(21) |
≈ |
1.77989+0.461469i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.222−0.974i)T |
| 5 | 1+(0.623−0.781i)T |
| 29 | 1+(3.01+4.46i)T |
good | 2 | 1+(−1.12+1.41i)T+(−0.445−1.94i)T2 |
| 7 | 1+(0.863−3.78i)T+(−6.30−3.03i)T2 |
| 11 | 1+(2.71−1.30i)T+(6.85−8.60i)T2 |
| 13 | 1+(−3.14+1.51i)T+(8.10−10.1i)T2 |
| 17 | 1+0.506T+17T2 |
| 19 | 1+(−1.65−7.24i)T+(−17.1+8.24i)T2 |
| 23 | 1+(−1.20−1.50i)T+(−5.11+22.4i)T2 |
| 31 | 1+(−6.24+7.83i)T+(−6.89−30.2i)T2 |
| 37 | 1+(4.19+2.01i)T+(23.0+28.9i)T2 |
| 41 | 1+3.48T+41T2 |
| 43 | 1+(−1.56−1.95i)T+(−9.56+41.9i)T2 |
| 47 | 1+(−1.55+0.750i)T+(29.3−36.7i)T2 |
| 53 | 1+(−8.80+11.0i)T+(−11.7−51.6i)T2 |
| 59 | 1−0.908T+59T2 |
| 61 | 1+(2.29−10.0i)T+(−54.9−26.4i)T2 |
| 67 | 1+(−1.18−0.571i)T+(41.7+52.3i)T2 |
| 71 | 1+(6.82−3.28i)T+(44.2−55.5i)T2 |
| 73 | 1+(−3.74−4.69i)T+(−16.2+71.1i)T2 |
| 79 | 1+(−3.10−1.49i)T+(49.2+61.7i)T2 |
| 83 | 1+(2.80+12.2i)T+(−74.7+36.0i)T2 |
| 89 | 1+(−4.77+5.98i)T+(−19.8−86.7i)T2 |
| 97 | 1+(2.98+13.0i)T+(−87.3+42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.53545256224675462773424959286, −10.40149248767095620502953713050, −9.871315966456986289161227405336, −8.565005453784279097493190957219, −7.70751552352481694140860427410, −5.96147653520484150484828891961, −5.38717884243356105862966215016, −4.08149850411232654831425524303, −3.17598299161865842814873267098, −2.18746068449515652882381584646,
0.991563728316292742569864583807, 3.32131981478803806694359449494, 4.49724621762130877625333249533, 5.32365531782759963651533018932, 6.62475877641408248267351286517, 7.02329659975723641209982356367, 7.940451242908672444628285330827, 8.946850231689133910590693824944, 10.48748914644768952424709496437, 10.95791806622466553187746622508