L(s) = 1 | + (0.320 + 0.401i)2-s + (−0.222 − 0.974i)3-s + (0.386 − 1.69i)4-s + (−0.623 − 0.781i)5-s + (0.320 − 0.401i)6-s + (−0.169 − 0.744i)7-s + (1.72 − 0.832i)8-s + (−0.900 + 0.433i)9-s + (0.114 − 0.500i)10-s + (−0.761 − 0.366i)11-s − 1.73·12-s + (−5.11 − 2.46i)13-s + (0.244 − 0.306i)14-s + (−0.623 + 0.781i)15-s + (−2.24 − 1.07i)16-s + 5.13·17-s + ⋯ |
L(s) = 1 | + (0.226 + 0.283i)2-s + (−0.128 − 0.562i)3-s + (0.193 − 0.846i)4-s + (−0.278 − 0.349i)5-s + (0.130 − 0.163i)6-s + (−0.0641 − 0.281i)7-s + (0.611 − 0.294i)8-s + (−0.300 + 0.144i)9-s + (0.0361 − 0.158i)10-s + (−0.229 − 0.110i)11-s − 0.501·12-s + (−1.41 − 0.682i)13-s + (0.0653 − 0.0818i)14-s + (−0.160 + 0.201i)15-s + (−0.560 − 0.269i)16-s + 1.24·17-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)(−0.385+0.922i)Λ(2−s)
Λ(s)=(=(435s/2ΓC(s+1/2)L(s)(−0.385+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
435
= 3⋅5⋅29
|
Sign: |
−0.385+0.922i
|
Analytic conductor: |
3.47349 |
Root analytic conductor: |
1.86373 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ435(256,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 435, ( :1/2), −0.385+0.922i)
|
Particular Values
L(1) |
≈ |
0.697113−1.04673i |
L(21) |
≈ |
0.697113−1.04673i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.222+0.974i)T |
| 5 | 1+(0.623+0.781i)T |
| 29 | 1+(4.76+2.50i)T |
good | 2 | 1+(−0.320−0.401i)T+(−0.445+1.94i)T2 |
| 7 | 1+(0.169+0.744i)T+(−6.30+3.03i)T2 |
| 11 | 1+(0.761+0.366i)T+(6.85+8.60i)T2 |
| 13 | 1+(5.11+2.46i)T+(8.10+10.1i)T2 |
| 17 | 1−5.13T+17T2 |
| 19 | 1+(1.17−5.14i)T+(−17.1−8.24i)T2 |
| 23 | 1+(−2.92+3.67i)T+(−5.11−22.4i)T2 |
| 31 | 1+(4.36+5.47i)T+(−6.89+30.2i)T2 |
| 37 | 1+(1.28−0.619i)T+(23.0−28.9i)T2 |
| 41 | 1−6.49T+41T2 |
| 43 | 1+(−6.89+8.65i)T+(−9.56−41.9i)T2 |
| 47 | 1+(−11.3−5.47i)T+(29.3+36.7i)T2 |
| 53 | 1+(−1.53−1.92i)T+(−11.7+51.6i)T2 |
| 59 | 1−2.12T+59T2 |
| 61 | 1+(−2.91−12.7i)T+(−54.9+26.4i)T2 |
| 67 | 1+(3.74−1.80i)T+(41.7−52.3i)T2 |
| 71 | 1+(3.60+1.73i)T+(44.2+55.5i)T2 |
| 73 | 1+(−6.28+7.88i)T+(−16.2−71.1i)T2 |
| 79 | 1+(10.6−5.12i)T+(49.2−61.7i)T2 |
| 83 | 1+(−2.12+9.29i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−6.92−8.68i)T+(−19.8+86.7i)T2 |
| 97 | 1+(−0.648+2.84i)T+(−87.3−42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70282255422355737702964389837, −10.14905670037249882439781900812, −9.091078110939347197965712297617, −7.59593531199727484542211493553, −7.41302140110402453617442451098, −5.88768014266234273492098076249, −5.40854209761474866728452516745, −4.10908063758663078927997713167, −2.36495539243129858037028279995, −0.74677239802277120144891295224,
2.42379180986097563359225948341, 3.39091626344950183146282798848, 4.50522185737734596632569340892, 5.46171894777573256501759152791, 7.09436134991411338693436941805, 7.52219647319416120396837413297, 8.862592395698007013205669547140, 9.613671981549427577024779389539, 10.77165093601684216222573648151, 11.40171805999219256436945394678