Properties

Label 2-435-1.1-c3-0-29
Degree $2$
Conductor $435$
Sign $-1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.691·2-s − 3·3-s − 7.52·4-s + 5·5-s + 2.07·6-s − 14.5·7-s + 10.7·8-s + 9·9-s − 3.45·10-s + 36.8·11-s + 22.5·12-s − 23.9·13-s + 10.0·14-s − 15·15-s + 52.7·16-s + 62.8·17-s − 6.22·18-s − 94.1·19-s − 37.6·20-s + 43.7·21-s − 25.4·22-s + 185.·23-s − 32.2·24-s + 25·25-s + 16.5·26-s − 27·27-s + 109.·28-s + ⋯
L(s)  = 1  − 0.244·2-s − 0.577·3-s − 0.940·4-s + 0.447·5-s + 0.141·6-s − 0.786·7-s + 0.474·8-s + 0.333·9-s − 0.109·10-s + 1.00·11-s + 0.542·12-s − 0.510·13-s + 0.192·14-s − 0.258·15-s + 0.824·16-s + 0.897·17-s − 0.0815·18-s − 1.13·19-s − 0.420·20-s + 0.454·21-s − 0.246·22-s + 1.68·23-s − 0.273·24-s + 0.200·25-s + 0.124·26-s − 0.192·27-s + 0.739·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 - 5T \)
29 \( 1 + 29T \)
good2 \( 1 + 0.691T + 8T^{2} \)
7 \( 1 + 14.5T + 343T^{2} \)
11 \( 1 - 36.8T + 1.33e3T^{2} \)
13 \( 1 + 23.9T + 2.19e3T^{2} \)
17 \( 1 - 62.8T + 4.91e3T^{2} \)
19 \( 1 + 94.1T + 6.85e3T^{2} \)
23 \( 1 - 185.T + 1.21e4T^{2} \)
31 \( 1 + 104.T + 2.97e4T^{2} \)
37 \( 1 + 259.T + 5.06e4T^{2} \)
41 \( 1 - 11.8T + 6.89e4T^{2} \)
43 \( 1 + 61.0T + 7.95e4T^{2} \)
47 \( 1 - 281.T + 1.03e5T^{2} \)
53 \( 1 + 170.T + 1.48e5T^{2} \)
59 \( 1 + 636.T + 2.05e5T^{2} \)
61 \( 1 + 379.T + 2.26e5T^{2} \)
67 \( 1 + 623.T + 3.00e5T^{2} \)
71 \( 1 - 298.T + 3.57e5T^{2} \)
73 \( 1 + 524.T + 3.89e5T^{2} \)
79 \( 1 - 563.T + 4.93e5T^{2} \)
83 \( 1 + 885.T + 5.71e5T^{2} \)
89 \( 1 + 447.T + 7.04e5T^{2} \)
97 \( 1 + 558.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15867060504802352030157116514, −9.363192040235874905048343646027, −8.793178267373351469376739021283, −7.39441827492440061712253587055, −6.45628805481239957303103005381, −5.46920412329107535706262119468, −4.47359411889405413605184688862, −3.30012771818319658793766011066, −1.36958129817956984038366708115, 0, 1.36958129817956984038366708115, 3.30012771818319658793766011066, 4.47359411889405413605184688862, 5.46920412329107535706262119468, 6.45628805481239957303103005381, 7.39441827492440061712253587055, 8.793178267373351469376739021283, 9.363192040235874905048343646027, 10.15867060504802352030157116514

Graph of the $Z$-function along the critical line