L(s) = 1 | − 0.691·2-s − 3·3-s − 7.52·4-s + 5·5-s + 2.07·6-s − 14.5·7-s + 10.7·8-s + 9·9-s − 3.45·10-s + 36.8·11-s + 22.5·12-s − 23.9·13-s + 10.0·14-s − 15·15-s + 52.7·16-s + 62.8·17-s − 6.22·18-s − 94.1·19-s − 37.6·20-s + 43.7·21-s − 25.4·22-s + 185.·23-s − 32.2·24-s + 25·25-s + 16.5·26-s − 27·27-s + 109.·28-s + ⋯ |
L(s) = 1 | − 0.244·2-s − 0.577·3-s − 0.940·4-s + 0.447·5-s + 0.141·6-s − 0.786·7-s + 0.474·8-s + 0.333·9-s − 0.109·10-s + 1.00·11-s + 0.542·12-s − 0.510·13-s + 0.192·14-s − 0.258·15-s + 0.824·16-s + 0.897·17-s − 0.0815·18-s − 1.13·19-s − 0.420·20-s + 0.454·21-s − 0.246·22-s + 1.68·23-s − 0.273·24-s + 0.200·25-s + 0.124·26-s − 0.192·27-s + 0.739·28-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(435s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1−5T |
| 29 | 1+29T |
good | 2 | 1+0.691T+8T2 |
| 7 | 1+14.5T+343T2 |
| 11 | 1−36.8T+1.33e3T2 |
| 13 | 1+23.9T+2.19e3T2 |
| 17 | 1−62.8T+4.91e3T2 |
| 19 | 1+94.1T+6.85e3T2 |
| 23 | 1−185.T+1.21e4T2 |
| 31 | 1+104.T+2.97e4T2 |
| 37 | 1+259.T+5.06e4T2 |
| 41 | 1−11.8T+6.89e4T2 |
| 43 | 1+61.0T+7.95e4T2 |
| 47 | 1−281.T+1.03e5T2 |
| 53 | 1+170.T+1.48e5T2 |
| 59 | 1+636.T+2.05e5T2 |
| 61 | 1+379.T+2.26e5T2 |
| 67 | 1+623.T+3.00e5T2 |
| 71 | 1−298.T+3.57e5T2 |
| 73 | 1+524.T+3.89e5T2 |
| 79 | 1−563.T+4.93e5T2 |
| 83 | 1+885.T+5.71e5T2 |
| 89 | 1+447.T+7.04e5T2 |
| 97 | 1+558.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.15867060504802352030157116514, −9.363192040235874905048343646027, −8.793178267373351469376739021283, −7.39441827492440061712253587055, −6.45628805481239957303103005381, −5.46920412329107535706262119468, −4.47359411889405413605184688862, −3.30012771818319658793766011066, −1.36958129817956984038366708115, 0,
1.36958129817956984038366708115, 3.30012771818319658793766011066, 4.47359411889405413605184688862, 5.46920412329107535706262119468, 6.45628805481239957303103005381, 7.39441827492440061712253587055, 8.793178267373351469376739021283, 9.363192040235874905048343646027, 10.15867060504802352030157116514