Properties

Label 2-435-1.1-c3-0-47
Degree $2$
Conductor $435$
Sign $-1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.16·2-s − 3·3-s + 2.04·4-s + 5·5-s − 9.50·6-s − 6.36·7-s − 18.8·8-s + 9·9-s + 15.8·10-s + 33.2·11-s − 6.12·12-s + 7.42·13-s − 20.1·14-s − 15·15-s − 76.1·16-s − 80.4·17-s + 28.5·18-s − 77.9·19-s + 10.2·20-s + 19.0·21-s + 105.·22-s − 26.4·23-s + 56.6·24-s + 25·25-s + 23.5·26-s − 27·27-s − 12.9·28-s + ⋯
L(s)  = 1  + 1.12·2-s − 0.577·3-s + 0.255·4-s + 0.447·5-s − 0.646·6-s − 0.343·7-s − 0.834·8-s + 0.333·9-s + 0.501·10-s + 0.910·11-s − 0.147·12-s + 0.158·13-s − 0.385·14-s − 0.258·15-s − 1.19·16-s − 1.14·17-s + 0.373·18-s − 0.941·19-s + 0.114·20-s + 0.198·21-s + 1.01·22-s − 0.239·23-s + 0.481·24-s + 0.200·25-s + 0.177·26-s − 0.192·27-s − 0.0877·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 - 5T \)
29 \( 1 + 29T \)
good2 \( 1 - 3.16T + 8T^{2} \)
7 \( 1 + 6.36T + 343T^{2} \)
11 \( 1 - 33.2T + 1.33e3T^{2} \)
13 \( 1 - 7.42T + 2.19e3T^{2} \)
17 \( 1 + 80.4T + 4.91e3T^{2} \)
19 \( 1 + 77.9T + 6.85e3T^{2} \)
23 \( 1 + 26.4T + 1.21e4T^{2} \)
31 \( 1 + 272.T + 2.97e4T^{2} \)
37 \( 1 + 143.T + 5.06e4T^{2} \)
41 \( 1 + 393.T + 6.89e4T^{2} \)
43 \( 1 - 122.T + 7.95e4T^{2} \)
47 \( 1 + 226.T + 1.03e5T^{2} \)
53 \( 1 - 493.T + 1.48e5T^{2} \)
59 \( 1 - 657.T + 2.05e5T^{2} \)
61 \( 1 + 642.T + 2.26e5T^{2} \)
67 \( 1 - 339.T + 3.00e5T^{2} \)
71 \( 1 + 891.T + 3.57e5T^{2} \)
73 \( 1 + 94.6T + 3.89e5T^{2} \)
79 \( 1 + 268.T + 4.93e5T^{2} \)
83 \( 1 - 1.22e3T + 5.71e5T^{2} \)
89 \( 1 - 632.T + 7.04e5T^{2} \)
97 \( 1 + 416.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.47924714132573858963808201230, −9.344660965565348033409565047938, −8.667650507153327587120821742970, −6.89443125121693639416760394433, −6.32314072898404592104507325340, −5.42158073114155094934730601884, −4.41346485463710854812546846409, −3.53456174271351236701878678208, −1.96849779262704836455072118971, 0, 1.96849779262704836455072118971, 3.53456174271351236701878678208, 4.41346485463710854812546846409, 5.42158073114155094934730601884, 6.32314072898404592104507325340, 6.89443125121693639416760394433, 8.667650507153327587120821742970, 9.344660965565348033409565047938, 10.47924714132573858963808201230

Graph of the $Z$-function along the critical line