Properties

Label 2-435-1.1-c3-0-36
Degree $2$
Conductor $435$
Sign $-1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.818·2-s − 3·3-s − 7.32·4-s − 5·5-s − 2.45·6-s + 13.8·7-s − 12.5·8-s + 9·9-s − 4.09·10-s + 71.7·11-s + 21.9·12-s − 78.8·13-s + 11.3·14-s + 15·15-s + 48.3·16-s + 93.8·17-s + 7.36·18-s − 15.4·19-s + 36.6·20-s − 41.5·21-s + 58.7·22-s − 187.·23-s + 37.6·24-s + 25·25-s − 64.5·26-s − 27·27-s − 101.·28-s + ⋯
L(s)  = 1  + 0.289·2-s − 0.577·3-s − 0.916·4-s − 0.447·5-s − 0.167·6-s + 0.748·7-s − 0.554·8-s + 0.333·9-s − 0.129·10-s + 1.96·11-s + 0.528·12-s − 1.68·13-s + 0.216·14-s + 0.258·15-s + 0.755·16-s + 1.33·17-s + 0.0964·18-s − 0.186·19-s + 0.409·20-s − 0.432·21-s + 0.569·22-s − 1.69·23-s + 0.320·24-s + 0.200·25-s − 0.487·26-s − 0.192·27-s − 0.685·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 + 5T \)
29 \( 1 - 29T \)
good2 \( 1 - 0.818T + 8T^{2} \)
7 \( 1 - 13.8T + 343T^{2} \)
11 \( 1 - 71.7T + 1.33e3T^{2} \)
13 \( 1 + 78.8T + 2.19e3T^{2} \)
17 \( 1 - 93.8T + 4.91e3T^{2} \)
19 \( 1 + 15.4T + 6.85e3T^{2} \)
23 \( 1 + 187.T + 1.21e4T^{2} \)
31 \( 1 + 73.3T + 2.97e4T^{2} \)
37 \( 1 + 127.T + 5.06e4T^{2} \)
41 \( 1 + 124.T + 6.89e4T^{2} \)
43 \( 1 + 41.9T + 7.95e4T^{2} \)
47 \( 1 + 588.T + 1.03e5T^{2} \)
53 \( 1 + 125.T + 1.48e5T^{2} \)
59 \( 1 + 55.2T + 2.05e5T^{2} \)
61 \( 1 - 259.T + 2.26e5T^{2} \)
67 \( 1 + 664.T + 3.00e5T^{2} \)
71 \( 1 - 265.T + 3.57e5T^{2} \)
73 \( 1 + 5.27T + 3.89e5T^{2} \)
79 \( 1 + 792.T + 4.93e5T^{2} \)
83 \( 1 - 1.42e3T + 5.71e5T^{2} \)
89 \( 1 + 1.49e3T + 7.04e5T^{2} \)
97 \( 1 - 764.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08274129967376189151901062749, −9.549088617473806412226396891444, −8.405187943380156907984833996804, −7.53626120969845468028908745958, −6.36765691704215368758715813389, −5.24237162854773291860623375510, −4.45355835617734043988422839818, −3.57727661138514481001836790764, −1.49299544987160675292208844514, 0, 1.49299544987160675292208844514, 3.57727661138514481001836790764, 4.45355835617734043988422839818, 5.24237162854773291860623375510, 6.36765691704215368758715813389, 7.53626120969845468028908745958, 8.405187943380156907984833996804, 9.549088617473806412226396891444, 10.08274129967376189151901062749

Graph of the $Z$-function along the critical line