L(s) = 1 | − 3-s − 0.561·5-s + 7-s + 9-s − 2.56·11-s + 13-s + 0.561·15-s + 5.68·17-s − 7.68·19-s − 21-s + 1.43·23-s − 4.68·25-s − 27-s − 5.68·29-s + 10.2·31-s + 2.56·33-s − 0.561·35-s − 3.43·37-s − 39-s + 7.12·41-s + 10.5·43-s − 0.561·45-s + 49-s − 5.68·51-s − 4.24·53-s + 1.43·55-s + 7.68·57-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.251·5-s + 0.377·7-s + 0.333·9-s − 0.772·11-s + 0.277·13-s + 0.144·15-s + 1.37·17-s − 1.76·19-s − 0.218·21-s + 0.299·23-s − 0.936·25-s − 0.192·27-s − 1.05·29-s + 1.84·31-s + 0.445·33-s − 0.0949·35-s − 0.565·37-s − 0.160·39-s + 1.11·41-s + 1.61·43-s − 0.0837·45-s + 0.142·49-s − 0.796·51-s − 0.583·53-s + 0.193·55-s + 1.01·57-s + ⋯ |
Λ(s)=(=(4368s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4368s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.302182589 |
L(21) |
≈ |
1.302182589 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 7 | 1−T |
| 13 | 1−T |
good | 5 | 1+0.561T+5T2 |
| 11 | 1+2.56T+11T2 |
| 17 | 1−5.68T+17T2 |
| 19 | 1+7.68T+19T2 |
| 23 | 1−1.43T+23T2 |
| 29 | 1+5.68T+29T2 |
| 31 | 1−10.2T+31T2 |
| 37 | 1+3.43T+37T2 |
| 41 | 1−7.12T+41T2 |
| 43 | 1−10.5T+43T2 |
| 47 | 1+47T2 |
| 53 | 1+4.24T+53T2 |
| 59 | 1−14.2T+59T2 |
| 61 | 1+5.68T+61T2 |
| 67 | 1+1.12T+67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1−0.561T+73T2 |
| 79 | 1−2.87T+79T2 |
| 83 | 1+17.1T+83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1+18.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.174758195477873674902437036817, −7.74261461489559210390978058711, −6.94121701775449860723157264232, −5.95372204930711142083955569183, −5.60285197586773223982111565410, −4.56682322034093923531413724618, −4.01190687968821877763013966021, −2.89050009681018490109509802532, −1.88056533104372271822735531205, −0.65933283836549223731925450048,
0.65933283836549223731925450048, 1.88056533104372271822735531205, 2.89050009681018490109509802532, 4.01190687968821877763013966021, 4.56682322034093923531413724618, 5.60285197586773223982111565410, 5.95372204930711142083955569183, 6.94121701775449860723157264232, 7.74261461489559210390978058711, 8.174758195477873674902437036817